1.25 Noble-Gas Chemistry

DS Brock and GJ Schrobilgen, McMaster University, Hamilton, ON, Canada **B Žemva**, Jožef Stefan Institute, Ljubljana, Slovenia

© 2013 Elsevier Ltd. All rights reserved.

1.25.1	Introduction	756
1.25.1.1	Discovery of Noble-Gas Reactivity	756
1.25.1.2	Noble-Gas Chemistry Reviews (2000–11)	756
1.25.2	Compounds in which the Formal Oxidation Number of Xenon Is Less Than One	757
1.25.2.1	Polynuclear Xenon Cations	757
1.25.2.1.1	The Xe_2^+ cation	757
1.25.2.1.2	The Xe_4^+ cation	757
1.25.2.2	Xenon–Gold Cations	757
1.25.2.3	Prospects for Xenon–M(Pt,Pd,Ag) Bonds and the HgXe ⁺ Cation	759
1.25.2.4	Computational Treatment of Gold Complexes	760
1.25.3	Xe(II) Compounds	760
1.25.3.1	Cationic Species	760
1.25.3.1.1	Xenon(II)—carbon bonded cations	760
1.25.3.1.2	Xenon derivatives of the $OTeF_5$ and $OSeF_5$ groups	765
1.25.3.1.3	Xenon-nitrogen bonded cations	766
1.25.3.1.4	Xenon halides and oxide fluorides	774
1.25.3.2	Neutral Xenon(II) Species	777
1.25.3.2.1	Xenon(II)—carbon bonded species	777
1.25.3.2.2	$FXeONO_2$ and $XeF_2 \cdot HNO_3$	782
1.25.3.2.3	XeF_2 as a ligand	783
1.25.3.3	The XeF_3^- Anion	792
1.25.4	Xe(IV) Compounds	794
1.25.4.1	Neutral Xe(IV) Species	794
1.25.4.1.1	$[Mg(XeF_2)(XeF_4)][AsF_6]_2$	794
1.25.4.1.2	$XeOF_2$, $F_2OXeN \equiv CCH_3$, $XeOF_2 \cdot nHF$, and XeO_2	795
1.25.4.2	Xe(IV) Cations	797
1.25.4.3	The $XeOF_3^-$ Anion	798
1.25.5	Xe(VI) Compounds	799
1.25.5.1	X-ray Crystal Structures of XeF ₆	799
1.25.5.2	Cationic Species	799
1.25.5.2.1	$[XeF_5][\mu-F(OsO_3F_2)_2]$, $[XeF_5][OsO_3F_3]$, and $[Xe_2F_{11}][OsO_3F_3]$	799
1.25.5.2.2	$(OsO_3F_2)_2 \cdot 2XeOF_4$ and $[XeF_5][SbF_6] \cdot XeOF_4$	800
1.25.5.2.3	$[XeF_5]_3[Ti_4F_{19}]$	801
1.25.5.2.4	XeO_2F^+ and $FO_2XeFXeO_2F^+$	801
1.25.6	Xe(VIII) Compounds	804
1.25.6.1	NMR Studies of XeO ₄ and [Na ₄][XeO ₆]	804
1.25.6.1.1	XeO ₄	804
1.25.6.1.2	$[Na_4][XeO_6] \cdot xH_2O (x=0, 2)$	805
1.25.7	Kr(II) Compounds	805
1.25.7.1	KrF ₂ as a Ligand	805
1.25.7.2	α-KrF ₂	806
1.25.7.3	Fluoride Ion Donor Properties of KrF ₂ , and KrF ⁺ and Kr ₂ F ₃ ⁺ Salt Formation	806
1.25.7.3.1	$[KrF][MF_6]$ (M = As, Sb, Bi, Au)	807
1.25.7.3.2	$[Kr_2F_3][SbF_6] \cdot KrF_2$, $([Kr_2F_3][SbF_6])_2 \cdot KrF_2$, $[Kr_2F_3][AsF_6] \cdot [KrF][AsF_6]$, and $[Kr_2F_3][PF_6] \cdot nKrF_2$	808
1.25.7.4	KrF_2 and the Synthesis of $TcOF_5$	810
1.25.8	Thermochemistries of Known and Unknown Ionic Noble-Gas Compounds	810
1.25.9	Noble-Gas Molecules Characterized by Mass Spectrometry and Matrix Isolation	810
1.25.9.1	Matrix-Isolated Noble Gases Bonded to Non-metals	811
1.25.9.1.1	The XeF ₃ and HXeU Radicals	813
1.25.9.2	Coordination of Noble Gases to Transition Metal Oxides	813
1.25.9.3	Noble-Gas Species Observed by Mass Spectrometry	814
1.25.10	Synthetic Applications of XeF ₂	814
1.25.10.1	xer ₂ as an uxidizing and Fluorinating Agent	814
1.25.10.2	inorganic Syntheses	814

1 25 10 2 1	XeE_2 as a fluorinating agent in the preparation of fluorofullerenes	814
1.25.10.2.2	The role of XeF ₂ in the synthesis of Ni ₂ F ₅ and its oxidation by KrF ₂	814
1.25.10.2.3	Reactions of tri(9-anthryl) derivatives of phosphorus and bismuth	815
1.25.10.2.4	Syntheses of organotellurium(IV) diazides and triazides	815
1.25.10.2.5	Syntheses of Pd(II), Pd(IV), Pt(II), and Pt(IV) fluoride complexes	815
1.25.10.2.6	Oxidative carbonylation of Fe(CO) ₅ in HF/SbF ₅ and HF/BF ₃	816
1.25.10.2.7	Syntheses of polyfluoroorganoiodine(V) tetrafluorides	816
1.25.10.2.8	Syntheses of Ir(III) fluoride complexes	816
1.25.10.2.9	Fluorination of dibenzoselenophene and dibenzo(1,2)diselenine	816
1.25.10.3	Organic Syntheses	816
1.25.10.4	Applications of [¹⁸ F]XeF ₂ to the Syntheses of ¹⁸ F-Labeled Radiopharmaceuticals for Positron Emission	
	Tomography	817
1.25.11	Conclusion	817
Acknowledgmer	ts	817
References		817

1.25.1 Introduction

1.25.1.1 Discovery of Noble-Gas Reactivity

The joint discovery of argon by Lord Rayleigh (born John William Strutt) and Sir William Ramsay has been described in an essay by John Meuring Thomas.¹ The discovery of argon (lazy) and helium (its presence in the sun had been spectroscopically detected before its discovery on Earth, hence it was named after the Greek god of the Sun, Helios) led Ramsay to conjecture that a new family of chemical elements must exist in the periodic table, which are chemically inert. Ramsey, together with his student, Morris W. Travers, isolated three new elementary gases – neon (new), krypton (hidden), and xenon (strange). With the discovery of radon (named after its original source, radium) some years later, the noble-gas family was complete.

Over the years immediately following their isolation, the chemical reactivities of the noble gases were investigated. Unfortunately, the majority of experiments were performed with argon and krypton because these gases were considerably more accessible than xenon. Even today, the chemistry of argon is limited to matrix-isolation studies, while the krypton compounds that have been isolated in macroscopic quantities are thermodynamically unstable and are therefore challenging to synthesize and to handle. In 1933, Professor Don Yost and his graduate student, Albert Kaye, passed electrical discharges through gaseous mixtures of xenon and fluorine. Up until that time, they came closest to the isolation of a xenon fluoride.² At that time, their failure to induce chemical reactivity was taken as proof that the noble gases were indeed inert. This negative finding was in accordance with the current electronic theory of chemical bonding and the octet rule which held that eight electrons in the valence orbital are the most stable electronic configuration. This became a dogma which was espoused in practically all chemistry textbooks of the time and up until 1962.

It was not until 23 March 1962 that this dogma was abandoned. Professor Neil Bartlett, then at the University of British Columbia, reacted xenon, with its complete octet of valence electrons, with the potent oxidant, PtF_6 , to give a yellow product which was initially formulated as '[Xe][PtF₆]', the first true chemical compound of a noble gas.³ The discovery, however, was not so straightforward. It began with the attempted purification of PtF4 which entailed heating PtF4 in a stream of diluted fluorine in a Pyrex glass apparatus.⁴ In this way, Bartlett obtained the salt [O₂][PtF₆].⁵ Because his finding was not universally accepted, he searched for the right candidate to prove the extraordinary one-electron affinity of PtF₆ which, according to his calculations, should exceed 7 eV.⁶ His subsequent reasoning and the experimental plan were brilliant. He realized that the first ionization potential of Xe (12.129 eV) is marginally higher than the first ionization potential of O₂ (12.075 eV). Because O_2 could be directly oxidized to $[O_2]$ $[PtF_6]$ with $PtF_{6\prime}^5$ he proceeded to oxidize xenon gas with PtF₆ and obtained the first compound of a noble-gas element. This experiment has been proclaimed to be among the ten most beautiful chemical experiments performed in the history of chemistry.⁷ The product, $(Xe)[PtF_6]'$, was amorphous and even today its structure is not fully understood. Details concerning the nature of '[Xe][PtF₆]' are discussed in Section 1.25.3.1.4.2 and by Graham et al.⁸

1.25.1.2 Noble-Gas Chemistry Reviews (2000–11)

During the period 2000-11 (inclusive), several reviews have appeared that deal with a broad spectrum of topics in noblegas chemistry: general noble-gas chemistry;9 129Xe nuclear magnetic resonance (NMR) in noble-gas chemistry;¹⁰ syntheses, properties, and chemistry of Xe(II) fluoride;¹¹ compounds that contain Xe-C bonds;12 Xe-N-bonded compounds derived from NSF3;13 inert matrices for low-temperature isolation and spectroscopy of noble-gas species;¹⁴ krypton chemistry;¹⁵ gold and mercury cations of xenon;¹⁶ calculations to determine the structures of complexes formed by a noble gas and a coinage metal monohalide;¹⁷ XeF₂ as a ligand;¹⁸ xenon NMR spectroscopy, theory and applications;¹⁹ a critical review of experimental and theoretical advances in noble-gas chemistry during the prior 20 years;²⁰ NMR studies of structure and bonding in xenon and krypton compounds;²¹ and a review summarizing the structures of neutral and cationic krypton and xenon-fluoro species.²² Chapter 9.04, which relates to hypervalent bonding, should also be consulted.

1.25.2.1 Polynuclear Xenon Cations

1.25.2.1.1 The Xe_2^+ cation

The Xe_2^+ cation is readily formed in the gas phase by collisions involving excited xenon atoms (eqn [1]).

$$Xe^* + Xe \rightarrow Xe_2^+ + e^-$$
 [1]

The Xe₂⁺ cation was established in the gas phase by mass spectrometry,²³ photoionization,^{24–26} and by elastic scattering studies.^{27,28} The Xe₂⁺ cation was first described in the condensed phase²⁹ when Xe₂⁺ was formed by reaction of $[O_2][SbF_6]$ with xenon gas (500 Torr). It is a bright green intermediate product in the reaction of Xe and $[O_2][SbF_6]$ which gave yellow [XeF] $[Sb_2F_{11}]$ as the final product (eqn [2]).^{29–31} The cation has only exhibited stability in HF/SbF₅ solutions. A very pale green solution was observed in AsF₅ at low temperature, but there was no indication of Xe₂⁺ formation in HSO₃F, BrF₅, or IF₅ solutions.³¹

$$\begin{array}{ll} 2Xe + 2[O_2][SbF_6] \rightarrow [Xe_2][SbF_6] + [O_2][SbF_6] + O_2 \\ \rightarrow [XeF][Sb_2F_{11}] + Xe + 2O_2 \end{array} \tag{2}$$

The bright green, paramagnetic Xe_2^+ ion has been characterized by Raman (123 cm⁻¹), ultraviolet (UV)–visible (335 and 710 nm), and electron spin resonance (ESR) spectroscopy.^{29,31}

Solutions of Xe_2^+ are stable indefinitely at room temperature under a pressure of xenon gas and can also be prepared by the irreversible reaction of a limited amount of water or other reducing agents (e.g., Pb or Hg) with SbF₅ solutions of [XeF] [Sb₂F₁₁] (eqns [3] and [4]).^{29,31} The reaction between [XeF] [Sb₂F₁₁] and Xe gas in SbF₅ solvent is reversible, with the extent of reaction being influenced by the Xe pressure (eqn [5]).^{31,32}

$$4[XeF][Sb_2F_{11}] + 3Pb(6Hg) \rightarrow 2[Xe_2][SbF_6] + 3Pb[SbF_6]_2(3[Hg_2][SbF_6]_2)$$
[3]

$$\begin{aligned} &8[XeF][Sb_2F_{11}] + 18H_2O \rightarrow \\ &4[Xe_2][SbF_6] + 12[H_3O][SbF_6] + 3O_2 \end{aligned} \tag{4}$$

$$3Xe + [XeF][Sb_2F_{11}] + 2SbF_5 \rightleftharpoons 2[Xe_2][Sb_2F_{11}]$$
 [5]

Reaction [5] was subsequently repeated and it was shown that the presence of HF and the resulting superacid, HF/SbF₅, is essential for Xe₂⁺ formation.³³ A dark green solution of [Xe₂][Sb₂F₁₁], SbF₅, and HF yielded crystalline [Xe₂][Sb₄F₂₁] at -30 °C. The X-ray crystal structure showed that the Xe₂⁺ cations and Sb₄F₂₁⁻ anions were well separated, with Xe···F contacts (>3.22 Å) that are only slightly shorter than or approach the sum of the van der Waals radii of xenon and fluorine (3.63 Å).³⁴ The Xe-Xe bond (3.087(1)Å) has been cited as the longest bond between maingroup elements.³³ The open-chain tetrameric fluoroantimonate (V) anion, which was observed for the first time, has the highest fluoride ion affinity (FIA) among the known Sb_nF_{n-1}⁻ (*n*=1-4) anions, which is apparently necessary to overcome the high FIA of the Xe₂⁺ cation.³³

1.25.2.1.2 The Xe_4^+ cation

Green solutions of the Xe_2^+ ion in SbF₅ reversibly convert into dark blue solutions at high pressures of Xe gas (30–50 bar).³⁵ Under these conditions, the solvent is a homogeneous mixture of SbF₅ and liquid Xe. The reversible color change, from blue to

green, was achieved by varying the temperature which, in turn, altered the amount of dissolved xenon. The Xe₃²⁺, Xe₃⁺, and Xe₄⁺ cations were considered as possible causes for the blue color. It appears unlikely that single crystals of the blue species can be grown because of the high viscosity of SbF5, which has been the only appropriate solvent for the generation of this cation, and the high Xe pressures that are required to stabilize the proposed Xe4+ cation. The characterization of the blue species was therefore based on spectroscopic data (UV-visible absorption, Raman, infrared (IR), and electron paramagnetic resonance (EPR) spectroscopy) and comparisons with theoretical calculations. It was concluded that the Xe_4^+ ion is likely the origin of the blue color. A linear $(D_{\infty h})$ structure with Xe-Xe bond lengths of 3.529 (terminal bonds) and 3.190 (central bond) Å was calculated as the energy-minimized structure of Xe₄⁺.³⁵

The possible formation, under different experimental conditions, of higher xenon aggregates such as $Xe_4 \cdot Xe_n^+$ has also been considered.³⁵ Calculations indicate that 12–18 very loosely bound xenon atoms are needed to stabilize a linear symmetric Xe_4^+ unit, with the outer xenon atoms at ~4.40 Å from the Xe_4^+ core.^{36–38} An earlier report suggested that larger Xe_n^+ aggregates underwent photo-decomposition, leaving behind Xe_4^+ ion fragments.³⁹

Xenon cations of the type Xe_n^+ ($n \le 30$) have been detected in molecular beam experiments using mass spectrometry and their structures have been predicted by quantum-chemical calculations.⁴⁰ A prominent feature of these clusters is delocalization of their positive charges over their cores, which are comprised of trimeric or tetrameric units held together by covalent bonds. The remaining xenon atoms are polarized and bind to these positively charged cores.⁴⁰

1.25.2.2 Xenon–Gold Cations

There have been indications that metal–xenon bonds can be formed. The complexes $(CO)_5M\cdots Xe$, $(CO)_5M\cdots Ng$ (M = Cr, W; Ng = Kr, Xe), $(CO)_5M\cdots Xe$, and $(CO)_5Fe^+\cdots Kr$ have been detected in noble-gas matrices.^{41–44} Quantum–chemical calculations were reported for $(CO)_5M\cdots Ng$ (M = Cr, Mo, W; Ng = Ar, Kr, Xe).⁴⁵ Short-lived transients containing xenon– or krypton–metal bonds have been observed in supercritical Xe and Kr solutions.^{46–51} The AuXe⁺ ion has been detected by mass spectrometry with a calculated bond length of 2.57 Å and a bond energy of 125.60 ± 12.56 kJ mol⁻¹,⁵² and ArAuCl and KrAuCl have been observed by microwave spectroscopy which yielded Ar–Au and Kr–Au bond lengths of 2.47 and 2.52 Å, respectively.⁵³

The reaction between AuF₃ and Xe in HF/SbF₅ solution yielded [AuXe₄][Sb₂F₁₁]₂, which was obtained as a dark red, crystalline solid at -78 °C.⁵⁴ Removal of Xe at -40 °C yielded Au[SbF₆]₂, a rare example of an Au(II) salt. The formation of AuXe₄⁺ from Au[SbF₆]₂ is reversible; thus, for the preparation of [AuXe₄][Sb₂F₁₁]₂, a moderately high xenon pressure (10 bar) was required.⁵⁴

Four xenon–gold cations have been isolated as their salts from the Au²⁺/HF/SbF₅/Xe system with the species depending primarily on the HF solvent acidity (concentration of SbF₅), Xe pressure, and temperature. At a high SbF₅ concentration (0.5 mol of SbF₅ in 1 mol of HF), [AuXe₄][Sb₂F₁₁]₂ crystallized

Figure 1 The structural unit in the X-ray crystal structure of the triclinic phase of [AuXe₄][Sb₂F₁₁]₂. Data from Ref. 55 were used to draw this figure.

Figure 2 The structural unit in the X-ray crystal structure of the tetragonal phase of $[AuXe_4][Sb_2F_{11}]_2$. Data from Ref. 55 were used to draw this figure.

in two crystallographic phases, triclinic (Figure 1) and tetragonal (Figure 2), which only differ with respect to their cation–anion interactions.⁵⁵ At lower Xe pressures, which were achieved by pumping on solutions of $[AuXe_4][Sb_2F_{11}]_2$, the $[AuXe_2][Sb_2F_{11}]_2$ salt formed. The effect of acidity was apparent when equimolar amounts of finely divided gold and XeF₂ were reacted with 10–12 bar of Xe in superacid media comprised of ~2:5, 10:7, and 5:1 molar ratios of HF:SbF₅, yielding *trans*-[AuXe_2][SbF₆], $[Au_2Xe_2F][SbF_6]_3$, and *trans*-[AuXe_2F][SbF₆][SbF₆][Sb_2F_{11}], respectively.⁵⁵ Both $[AuXe_4][Sb_2F_{11}]_2$ phases were stable up to -40 °C. Warming above this temperature resulted in melting accompanied by Xe loss, a color change from dark red to light orange, and formation of Au[SbF₆]2.⁵⁴

The crystal structure of triclinic $[AuXe_4][Sb_2F_{11}]_2$ (Figure 1) consists of discrete $AuXe_4^{2+}$ cations and $Sb_2F_{11}^-$ anions. The Au atom is situated in the middle of a square plane of Xe atoms with the four Au–Xe distances ranging from 2.728(1) to 2.750(1)Å. The three closest Au····F cation–anion contacts are 2.671(5), 2.949(5), and 3.153(5)Å and the $Sb_2F_{11}^-$ anions are bent at their Sb···F···Sb bridges. The triclinic phase has one particularly short Au···F contact (Au···F12, 2.671(5)Å) which, together with the square-planar $AuXe_4^{2+}$ unit, results in a square pyramidal arrangement. The contacts are weaker (Au···F10, 2.927(9)Å) in the tetragonal phase Figure 2.⁵⁵

The Raman spectrum of triclinic $[AuXe_4][Sb_2F_{11}]_2$ showed, in addition to bands attributable to the $Sb_2F_{11}^-$ anion, a very

Figure 3 The structural unit in the X-ray crystal structure of *trans*-[AuXe₂][SbF₆]₂. Reproduced with permission from Drews, T.; Seidel, S.; Seppelt, K. *Angew. Chem. Int. Ed.* **2002**, *41*, 454–456.

strong band at 129 cm⁻¹. This band was assigned to the totally symmetric stretching vibration of AuXe₄²⁺ based on the frequency predicted by ab initio and density functional theory (DFT) calculations.⁵⁴

The mean thermochemical Au–Xe bond energy for $AuXe_4^{2+}$ in eqn [6] is estimated to be 210 kJ mol⁻¹, which is

$$AuXe_4^{2+} \rightarrow Au^{2+} + 4Xe$$
 [6]

in accordance with the thermal stability of $[AuXe_4][Sb_2F_{11}]_2$. Because gold is the most electronegative transition metal, a large charge transfer from xenon to gold occurs in $AuXe_4^{2+}$, which is reflected in the calculated charge distribution of the cation, where most of the positive charge is located on the Xe atoms.⁵⁴

Reduction of Au^{3+} to Au^{2+} and its complexation with xenon only occur in the superacid medium, HF/SbF₅. The overall reaction emphasizes, yet again, the role of 'protons' (H₂F⁺) and HF elimination in Au–Xe bond formation (eqn [7]).⁵⁴ Crystals of green [Xe₂][Sb₄F₂₁]³³ were also identified in the solid reaction mixture at -60 °C.

$$AuF_3 + 6Xe + 3H^+ \rightarrow AuXe_4^{2+} + Xe_2^+ + 3HF$$
 [7]

Thermally unstable, violet-black *cis*- $[AuXe_2][Sb_2F_{11}]_2$ and thermally very unstable, ochre-colored *trans*- $[AuXe_2][SbF_6]_2$ (Figure 3) crystals were isolated.⁵⁵ In the case of the

Figure 4 The structural unit in the X-ray crystal structure of [Au₂Xe₂F][SbF₆]₃. Reproduced with permission from Drews, T.; Seidel, S.; Seppelt, K. Angew. Chem. Int. Ed. **2002**, *41*, 454–456.

cis-isomer, the Au atom is in a square-planar environment consisting of two Xe atoms that are cis to one another (2.658(1), 2.671(1)Å) and two bridging cis-F atoms (2.181(4), 2.238(4)Å) from two $\text{Sb}_2\text{F}_{11}^-$ anions. The Au atom in the trans-isomer is also in a square-planar environment and is coordinated to two Xe atoms (2.709(1)Å) that are trans to one another and two bridging F atoms (2.159(6)Å) from different Sb_6^- anions.⁵⁵

Green crystals of $[Au_2Xe_2F][SbF_6]_3$ were shown to be stable up to nearly room temperature. The crystal structure of $[Au_2Xe_2F][SbF_6]_3$ is shown in Figure 4. Both Au atoms are in square-planar environments comprised of one Xe atom and three bridging F atoms. The bridging F atom (F1) distance to Au is very short (2.045(2) Å) relative to the Au···F distance in triclinic $[AuXe_4][Sb_2F_{11}]_2$ (2.671(5)Å).⁵⁵

The only known Au³⁺ complex is *trans*-[AuXe₂F][SbF₆] [Sb₂F₁₁]. The compound was isolated from an HF/SbF₅ mixture having a lower acidity (HF/SbF₅ \sim 5:1). The compound was surprisingly stable when the reaction was carried out at -10 °C, with ochre-colored crystals forming at -35 °C. The Au atom is in a square-planar environment where it is surrounded by two trans-Xe atoms and two trans-F atoms, one terminal and one bridged to Sb1 (Figure 5).

The Au(III)–Xe bonds (2.593(1) and 2.619(1)Å) are shorter than the Au(II)–Xe bonds in triclinic and tetragonal [AuXe₄][Sb₂F₁₁]₂, *cis*-[AuXe₂][Sb₂F₁₁]₂, and *trans*-[AuXe₂][SbF₆]₂.⁵⁵ The Au–F bond lengths (1.881(4) and 1.983(4) Å) are typical for Au, for example, AuF₃ (1.91(4), 2.04(3)Å).⁵⁶

The only xenon cation that contains Au(I) has been synthesized and isolated as the salt, $[(F_3As)AuXe][Sb_2F_{11}]$.⁵⁷ The synthetic strategy leading to this cation entailed exchange of the weakly basic SbF₆⁻ anion in $[(F_3As)Au][SbF_6]$ for the more weakly basic Sb_2F_{11}⁻ anion.⁵⁸ The reaction was carried out in a 5:1 molar ratio of HF:SbF₅ in the presence of excess xenon (7:1 molar ratio relative to $[(F_3As)AuXe][Sb_2F_{11}]$). The compound, $[(F_3As)AuXe][Sb_2F_{11}]$, crystallizes as colorless needles which are stable at room temperature. The interactions between $(F_3As)AuXe^+$ and $Sb_2F_{11}^-$ are weak, with the shortest $Au \cdots F$ distance at 2.848 Å. The As-Au-Xe unit is nearly

Figure 5 The structural unit in the X-ray crystal structure of *trans*- $[AuXe_2F][SbF_6][Sb_2F_{11}]$. Reproduced with permission from Drews, T.; Seidel, S.; Seppelt, K. *Angew. Chem., Int. Ed.* **2002**, *41*, 454–456.

linear, and the Au(I)–Xe bond (2.6072(6)Å) is as short as the Au(III)–Xe bond in $[AuXe_2F][SbF_6][Sb_2F_{11}]$ and significantly shorter than Au(II)–Xe bonds.⁵⁷

Reactions of the type $AuXe_n^{2+} + nKr \rightarrow AuKr_n^{2+} + nXe$ are thermodynamically unfavorable, requiring about 42 kJ mol⁻¹ per Xe/Kr substitution.¹⁶ Because gold–xenon complexes seem to be at the border of thermodynamic stability, the outlook for the syntheses of gold–krypton complexes is not promising.

1.25.2.3 Prospects for Xenon–M(Pt,Pd,Ag) Bonds and the HgXe⁺ Cation

When gold is substituted by neighboring heavy metals such as Pt, Pd, Ag, or Hg, quantum-chemical calculations consistently predict that complexes of the type MXe_n^{x+} will have reasonable bond energies. It may be difficult, however, to compare the numerical values of the mean bond energies of different complexes with those of different metal atoms because the economical use of core potentials and basis sets makes such energy comparisons unreliable. Experimental attempts to isolate $AgXe_n^{2+}$ and $CuXe_n^{2+}$ have failed.¹⁶ The theoretical calculations favor the formation of the PtXe_n^{2+} cations which

are predicted to be more stable than the corresponding $AuXe_n^{2+}$ complexes.¹⁶ The problem is a source of naked Pt²⁺. Although Pd²⁺ exists as a cationic species in HF/SbF₅ solution,⁵⁹ it does not add xenon.

The colorless HgXe⁺ salt, [HgXe][SbF₆][Sb₂F₁₁], has been obtained⁵⁷ (Figure 6) by reaction of HgF₂ and Xe in SbF₅ solvent at 80 °C. The Hg–Xe distance is 2.76 Å. When HF was present, xenon was replaced by HF and [HgHF][SbF₆][Sb₂F₁₁] was formed.

1.25.2.4 Computational Treatment of Gold Complexes

Following experimental confirmation of the existence of the $AuXe_4^{2+}$ cation⁵⁴ in the crystal structure of $[AuXe_4][Sb_2F_{11}]_2$ and the discovery of the matrix-isolated NgAuCl (Ng=Ar, Kr) molecules, 53 a computational study of the AuNg₄²⁺ (Ng=Ar, Kr, and Xe) cation series was undertaken⁶⁰ which consisted of topological analyses of the electron localization function (ELF) and the electron densities (atoms in molecules, AIM). The ELF analyses of the $AuNg_4^{2+}$ cations (Ng=Ar, Kr, and Xe) indicated that the Au-Ng bonding is dominated by electrostatic interactions and is of a 'closed shell' nature. The AIM method revealed similar results. The bond critical point of the Au-Ng bond was calculated to have a positive value for the Laplacian of the electron density that decreases from 0.163 $(AuAr_4^{2+})$ to 0.087 $(AuXe_4^{2+})$. The atomic charge separations, $Au^{+1.30}Ar_4^{+0.18}$, $Au^{+1.19}Kr_4^{+0.20}$, and $Au^{+0.29}Xe_4^{+0.43}$, show a decrease of the positive charge on the gold atom and, correspondingly, increases on the noble-gas atoms. Paired electron densities were found to accumulate inside topological bonding regions while unpaired electron density concentrations occurred outside. The integrated spin densities increased from $0.16 \text{ e for AuXe}_4^{2+}$ to $0.28 \text{ e for AuAr}_4^{2+}$.⁶⁰

Figure 6 The Hg(II) coordination sphere in the X-ray crystal structure of [HgXe][SbF₆][Sb₂F₁₁]. Reproduced with permission from Hwang, I. C.; Seidel, S.; Seppelt, K. *Angew. Chem., Int. Ed.* **2003**, *42*, 4392–4395.

1.25.3 Xe(II) Compounds

1.25.3.1 Cationic Species

1.25.3.1.1 Xenon(II)-carbon bonded cations

Two reviews relating to the syntheses, structures, and reactivities of [RXe][Y] salts and the neutral compound series, RXeX and RXeR' (R and R' are organic groups), have been published.^{12,61} The first xenon–carbon bonded species, $C_6F_5Xe^+$, was synthesized as the $C_6F_5BF_3^{-62}$ and $(C_6F_5)_3BF^{-63}$ salts with the anion depending on whether XeF₂ or B(C_6F_5)₃ is in excess (eqns [8] and [9]). High-yield syntheses have since been achieved for $[C_6F_5Xe][BF_4]$ salts as well as for the BF₄⁻⁻ salts of 2,3,4,5- $C_6HF_4Xe^+$, 3,4,5- $C_6H_2F_3Xe^+$, and 3,5- $C_6H_3F_2Xe^+$ by the reaction of the appropriate aryldifluoroborane with XeF₂ in CH₂Cl₂ (eqn [10]).⁶⁴

$$XeF_{2(excess)} + B(C_6F_5)_3 \xrightarrow[-30]{CH_2Cl_2} [C_6F_5Xe][C_6F_5BF_3]$$
[8]

$$XeF_2 + B(C_6F_5)_{3(excess)} \frac{CH_3CN}{0\ ^\circ C} [C_6F_5Xe] \big[(C_6F_5)_3BF \big] \qquad [9]$$

$$K[RBF_3] \xrightarrow{BF_3} RBF_2 \xrightarrow{XeF_2} [RXe][BF_4]$$
[10]

1.25.3.1.1.1 Stabilities and reactivities of salts containing the $C_{\theta}F_{s}Xe^{+}$ cation

When the reaction of $C_6F_5BF_2$ or $K[C_6F_5BF_3]$ with XeF₂ is carried out in aHF at -30 °C, two competing reactions occur: xenodeborylation (formation of $C_6F_5Xe^+$) and fluorine addition to the aryl group.⁶⁵ The products were confirmed by ¹⁹F NMR spectroscopy and were the same products observed when $[C_6F_5Xe][BF_4]$ was dissolved in aHF. In the case of $C_6F_5BF_2$, the reaction products are given in **Scheme 1**.⁶⁵ In contrast, the reaction between $K[C_6F_5BF_3]$ and XeF₂ gave predominantly $[C_6F_5Xe][BF_4]$ with minor oxidative fluorination of the $C_6F_5BF_3^-$ anion to $C_6F_7BF_3^-$.

The reaction of XeF₂ with the analogous perfluoroalk-1enyldifluoroboranes, R_FBF_2 , and potassium perfluoroalk-1enyltrifluoroborates, $K[R_FBF_3]$ ($R_F = cis$ - $C_2F_5CF = CF$, trans- $C_4F_9CF = CF$), resulted in fluorine addition across the C==C double bond in aHF, with no evidence for organoxenon cation formation.⁶⁵ However, $K[C_6F_{13}BF_3]$ did not react with XeF₂ in aHF. The oxidative addition of fluorine by XeF₂ was attributed to a dramatic increase in the oxidation potential of XeF₂ as a result of the highly acidic solvent medium and the greater reducing potentials of fluoroalkenyl and aryl groups in organotrifluoroborate anions relative to those of the neutral organodifluoroboranes.

Further examples of C₆F₅Xe⁺ salts that have been synthesized include those of the weakly coordinating BY4- $(Y=CF_{3}, C_{6}F_{5}, CN, or OTeF_{5})$ anions.⁶⁶ The latter were obtained by salt metatheses of [C₆F₅Xe][BF₄] and M[BY₄] $(M = K_t Cs)$. The $[C_6F_5Xe][BY_4]$ salts showed no direct correlation between the nucleophilicity of the anion and the temperatures at which they decomposed in the solid state or in solution. The C₆F₅Xe⁺ salt exhibiting the lowest stability in the solid state and in solution (weakly coordinating CH₂Cl₂ and strongly coordinating CH₃CN) was [C₆F₅XeNCCH₃] $[B(C_6F_5)_4]^{.66}$ All salts of the series decompose to C_6F_5H in CH₃CN. In the case of $[C_6F_5XeNCCH_3][B(C_6F_5)_4]$, the decomposition also proceeded through a second pathway where the cation attacked the nucleophilic ipso-carbon of the anion, resulting in significant amounts of $(C_6F_5)_2$. By contrast, the decompositions of $[C_6F_5Xe][BY_4]$ (Y=CF₃ or OTeF₅) in CH₂Cl₂ resulted in hydrogen and chlorine abstraction by the C₆F₅·radical to produce C₆F₅H and C₆F₅Cl, whereas [C₆F₅XeNCCH₃][B(C₆F₅)₄] also formed significant amounts of $(C_6F_5)_2$.

The reactions of $[C_6F_5Xe][BY_4]$ (Y = CF₃, C₆F₅, CN, or OTeF₅) with the π nucleophile, C₆H₅F, were carried out in CH₃CN and CH₂Cl₂ solvents.⁶⁶ These weakly ion-paired [C₆F₅Xe][BY₄] salts exhibited a range of stabilities that were not drastically influenced by CH₃CN coordination. However, it was shown that the reactivities of [C₆F₅Xe][BY₄] with excess C₆H₅F differed in CH₃CN. The reactions between [C₆F₅Xe][BY₄] and C₆H₅F proceeded significantly faster than their decompositions in the solvent alone; however, the rates of reaction and product distributions were dependent upon the anion substituents, Y, the solvent, and the presence of additional molecular or anionic (e.g., H₂O or F⁻) nucleophiles. In each case, the major products were isomeric mixtures of hexafluorobiphenyls, F5C6-C6H4F, with the rate of formation occurring more rapidly in weakly coordinating CH₂Cl₂ than in strongly coordinating CH₃CN. The aforementioned description of factors influencing the rates of pentafluorophenylation and product distributions is consistent with the intermediate coordination of C₆H₅F at C₆F₅Xe⁺ and the subsequent radical attack of C₆H₅F by C₆F₅.

The relative degrees of cation-solvent interactions for the $C_6F_5Xe^+$ cation in $[C_6F_5Xe][BY_4]$ (Y=CF₃, C₆F₅, CN, or OTeF₅) are also reflected in the ¹⁹F NMR parameters.⁶⁶ The ¹⁹F NMR resonances of C₆F₅Xe⁺ in CH₂Cl₂ and CF₃CH₂CF₂CH₃ (PFB) are shifted to high frequency relative to those obtained for C₆F₅Xe⁺ in CH₃CN and are consistent with a more weakly coordinated $C_6F_5Xe^+$ cation and significant polarization of the C_6F_5 group by Xe(II) in CH₂Cl₂ and PFB. The enhanced shielding and narrow chemical shift range found in CH3CN solutions are consistent with C₆F₅XeNCCH₃⁺ formation. The similarity between the ¹⁹F chemical shifts of [C₆F₅Xe][BF₄] in aHF and those obtained for $[C_6F_5Xe][B(CF_3)_4]$ in a PFB solution are indicative of a weakly coordinated $C_6F_5Xe^+$ cation. To account for this observation, it was proposed that HF solvates the anion, thereby resulting in the much larger $BF_4 \cdot (HF)_n^-$ anion, which disperses the negative charge over more than four fluorine atoms, rendering the anion less basic.

Simulations of the ¹⁹F and ¹²⁹Xe NMR spectra of $C_6F_5Xe^+$ have provided the complete set of aryl ¹⁹F ^{-19}F and ¹²⁹Xe ^{-19}F coupling constants and their relative signs,⁶⁶ which are in accord with those of isoelectronic C_6F_5I .

1.25.3.1.1.2 Solid-state characterization of salts of the $C_6F_5Xe^+$ and $C_6F_5XeNCCH_3^+$ cations

The $C_6F_5Xe^+$ and $C_6F_5XeNCCH_3^+$ cations have been structurally characterized in the solid state as the $[C_6F_5Xe]$ $[B(CF_3)_4]$, $[C_6F_5XeNCCH_3][B(CF_3)_4]$, $[C_6F_5Xe][B(CN)_4]$, and $[C_6F_5XeNCCH_3][B(C_6F_5)_4]$ salts, providing a number of insights into the coordination behavior of the $[C_6F_5Xe]^+$ cation in weakly coordinating anion salts.⁶⁷

Raman spectroscopic results indicated that there are negligible effects upon anion substitution or upon CH_3CN coordination, with the cation bands remaining unshifted. In particular, $v(Xe-C)_{ip}$, which in-phase couples with $\delta(CCF)_{ip}$, was observed at 201 and 205 cm⁻¹ for $[C_6F_5Xe][B(CN)_4]$ and $[C_6F_5Xe][BF_4]$, respectively, and at 202 and 203 cm⁻¹ for $[C_6F_5XeNCCH_3]$ [B(CF₃)₄] and $[C_6F_5XeNCCH_3][B(C_6F_5)_4]$, respectively.⁶⁷ The weak donor–acceptor interaction with CH₃CN is also reflected in the C–N stretch, which shifts by only 25 and 30 cm⁻¹ for $[C_6F_5XeNCCH_3][B(C_6F_5)_4]$ and $[C_6F_5XeNCCH_3][B(CF_3)_4]$, respectively, relative to CH₃CN. Furthermore, v(Xe-N), which occurs at 144 cm⁻¹, is significantly lower than for the more covalent donor–acceptor Xe–N bonds, that is, FXeNCH⁺, 330 cm^{-1,68,69} FXeNCCH₃⁺, 268, 284, 288 cm^{-1,70} and FXeNSF₃⁺, 194 cm^{-1,71}

The aforementioned weak donor–acceptor interactions are also manifested in the X-ray crystal structures (Figures 7–10).⁶⁷ In each structure, the C–C and C–F bond lengths are within $\pm 3\sigma$ as are the Xe–C bond lengths ([C₆F₅Xe][B(CN)₄], 2.081(3) Å; [C₆F₅Xe][B(CF₃)₄], 2.104(5)Å; [C₆F₅XeNCCH₃][B(CF₃)₄], 2.100(6)Å; and [C₆F₅XeNCCH₃][B(C₆F₅)₄], 2.100(10)Å). The Xe--N bond lengths ([C₆F₅XeNCCH₃][B(CF₃)₄], 2.640(6) Å; [C₆F₅XeNCCH₃][B(C₆F₅)₄], 2.610(10)Å) are indicative of weak adduct formation as are the C–N bond lengths ([C₆F₅XeNCCH₃][B(CF₅XeNCCH₃][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃]][B(CF₅XeNCCH₃][B(CF₅XeNCCH₃]][B(CF

Figure 7 The structural unit in the X-ray crystal structure of $[C_6F_5Xe]$ $[B(CF_3)_4]$. Reproduced with permission from Koppe, K.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2008**, *47*, 3205–3217.

Figure 8 The structural unit in the X-ray crystal structure of [C₆F₅Xe][B(CN)₄]. Reproduced with permission from Koppe, K.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2008**, *47*, 3205–3217.

Figure 9 The structural unit in the X-ray crystal structure of [C₆F₅XeNCCH₃][B(CF₃)₄]. Reproduced with permission from Koppe, K.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2008**, *47*, 3205–3217.

Figure 10 The structural unit in the X-ray crystal structure of [C₆F₅XeNCCH₃][B(C₆F₅)₄]. Reproduced with permission from Koppe, K.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2008**, *47*, 3205–3217.

 $[B(C_6F_5)_4]$, 1.157(19)Å), which are essentially the same as in CH_3CN^{72} (1.141(2)Å). In both cases, the Xe···N—C bond angles associated with coordinated CH₃CN are slightly bent for the B(CF₃)₄⁻ (174.8(2)°) and B(CN)₄⁻ salts (177.1(4)°), and are attributed to crystal packing. The trends in Raman frequencies and bond lengths are also reproduced by quantum-chemical calculations, which reveal that the geometrical parameters of C₆F₅Xe⁺ are rather insensitive to CH₃CN coordination. The $B(CF_3)_4^-$ salt displays the weakest cation-anion interaction in its crystal structure (2.913(4)Å; cf. van der Waals sum for N and Xe of 3.63 $Å^{34}$) providing the closer approximation to gas-phase C₆F₅Xe⁺ for the two unsolvated C₆F₅Xe⁺ salts examined in this study.⁶⁷ The ability of CH₃CN to compete effectively with the weakly coordinating $B(C_6F_5)_4^-$ and $B(CF_3)_4^-$ anions for the Lewis acidic xenon center of the cation is demonstrated by formation of their C₆F₅XeNCCH₃⁺ salts. By contrast, the anion-cation interaction (2.716(3)Å) is apparently sufficiently strong to prevent CH₃CN coordination in the B(CN)₄⁻ salt. Coordination of a single CN ligand of the anion to xenon is apparent from the C-N stretching region of $B(CN)_4^{-1}$ in the Raman spectrum, where symmetry lowering of the anion results in four bands instead of the two bands $(v_1(A_1) \text{ and } v_6(T_2))$ expected for a tetrahedral (T_d) anion. The distortion, however, is not apparent, within $\pm 3\sigma$, from the geometric parameters of the $B(CN)_4^-$ anion.

1.25.3.1.1.3 Syntheses and NMR characterizations of alkenyl derivatives of Xe(II) cations

Prior to 2000, the only alkenyl derivative of Xe(II) was reported in a preliminary communication dealing with the NMR spectroscopic observation of the $F_2C=CFXe^+$ cation.⁷³ Following the successful synthetic methodologies used to form arylxenon(II) cations (see Section 1.25.3.1.1), and the syntheses of K[RBF₃] salts (eqns [11–14]), reactions analogous to eqn [10] have enabled the syntheses of several XCF=CFBF₂ (X=F, *trans*-H, *cis*-Cl, *trans*-Cl, *cis*-CF₃, *cis*-C₂F₅) derivatives that were subsequently reacted with XeF₂ to prepare new alkenylxenon(II) and 2-X-1,2-difluoroalk-1-enylxenon(II) salts.⁷⁴

$$\begin{aligned} \text{XCF} = \text{CFLi} + \text{B}(\text{OMe})_3 &\rightarrow \text{Li}[\text{XCF} = \text{CFB}(\text{OMe})_3] \\ \\ \frac{\text{K}[\text{HF}_2], \text{aq HF}}{-\text{LiF. MeOH}} \text{K}[\text{XCF} = \text{CFBF}_3] \end{aligned} \tag{11}$$

$$trans-\text{Et}_3\text{SiCF} = \text{CFH} \xrightarrow{1.\text{Bull}}_{2.\text{B(OMe)}_3}$$

$$\text{Li}[trans-\text{Et}_3\text{SiCF} = \text{CFB}(\text{OMe})_3] \xrightarrow{K[\text{HF}_2], \text{ aq HF}}_{-\text{LiF}, \text{MeOH}}$$

$$K[trans-\text{Et}_3\text{SiCF} = \text{CFBF}_3]$$

$$[12]$$

$$K[trans-Et_3SiCF = CFBF_3] + HF + H_2O$$

$$\xrightarrow{DMSO} K[trans-HCF = CFBF_3]$$
[13]

$$Li[CF_{3}CF = CFB(OMe)_{3}] + K[HF_{2}] \xrightarrow[-LiF, MeOH]{}$$

$$K[cis-and trans-CF_{3}CF = CFBF_{3}]$$
[14]

It is noteworthy that no organoxenon(II) cations were obtained when the trans-XCF=CFBF₂ (X=CF₃, C₄F₉, C₄H₉, Et₃Si) precursors were used under similar conditions. It was consequently surmised that reactions leading to alkenylxenon(II) salts proceed according to Scheme 2, which also accounted for the formation of traces of organotrifluoroborate anions and moderate to equimolar amounts of alkyltrifluoroborate anions. When the Xe-C(1) distance was sufficiently short in the transition state for successful Xe-C bond formation, xenodeborylation occurred and the [XCF=CFXe][BF₄] salt formed according to Scheme 2, reaction [1].⁷⁴ However, when the ligand was too bulky, preventing interaction between C(1) and Xe, a more complex series of reactions had to be proposed to account for the sole observation of organotrifluoroborate and alkyltrifluoroborate anions. The alkenylxenon(II) salts and reaction products were unambiguously characterized by ¹⁹F, ¹³C, and ¹²⁹Xe NMR spectroscopy.⁷⁴

Using reaction conditions analogous to those used for the syntheses of the 2-X-1,2-difluoroalk-1-enylxenon(II) salts, the $[CF_2=CXXe][BF_4]$ (X = H, Cl, CF₃) salts were prepared by the reaction of XeF₂ with the corresponding alkenyldifluoroborane, $CF_2=CXBF_2$, in 1,1,1,3,3-pentafluoropropane (PFP) at -60 °C.⁷⁵ The alkenylxenon(II) salts were characterized by multi-NMR spectroscopy. It was noted that, although all three salts were synthesized, $[CF_2=C(CF_3)Xe][BF_4]$ was obtained in highest yield (77%), and was the only salt that was stable in aHF at -60 °C. The yields of the remaining salts were $[CF_2=CHXe][BF_4]$ (60%) and $[CF_2=CCIXe][BF_4]$ (19%). The latter decomposed under the stated reaction conditions, yielding $CF_2=CFCI$, CF_3CF_2CI , and BF_3 , and upon dissolution

in aHF, the CF₃CFClBF₃⁻ anion was also formed. With the exception of the CF₃CFHBF₃⁻ anion, which was not observed, $[CF_2=CHXe][BF_4]$ showed analogous decomposition products under the stated reaction conditions. Replacement of the α -fluorine atom of CF₂=CFBF₂ by the less electron-withdrawing H and Cl atoms or by the trifluoromethyl group had no effect on the substitution of the difluoroboryl group by Xe(II), but did affect the stabilities of the salts when suspended in PFP or dissolved in aHF.⁷⁵

1.25.3.1.1.4 Syntheses and NMR characterizations of alkynyl derivatives of Xe(II) cations

A communication was published in 1992^{76} describing the reaction of Li[*t*-BuC=CBF₃] with XeF₂ in CH₂Cl₂ and the detection of [*t*-BuC=CXe][BF₄]. However, as a result of its thermal instability (decomposition at -30 °C), the salt was not isolated, but the structure was established by ¹H, ¹¹B, ¹³C, ¹⁹F, and ¹²⁹Xe NMR spectroscopy (at -40 °C), IR spectroscopy (at 0 °C), and by alkynylation of PPh₃ to form [*t*-BuC=CPPh₃] [BF₄] (-78 °C). Further attempts to prepare other alkynyl derivatives of Xe(II) by analogous reactions and by reactions of alkynyltrimethylsilane in combination with BF₃·OEt₂ and XeF₂ were unsuccessful.

An alkynylxenon(II) salt was subsequently isolated in satisfactory to good yields by adding XeF₂ to a cold (-47 °C) solution of CF₃C≡CBF₂ in PFP.⁷⁷ The product, [CF₃C≡CXe] [BF₄], was isolated as a white solid that was stable at 20 °C for at least 2–3 h. The salt was soluble in aHF where it was remarkably stable, showing a 30% conversion to a mixture of *cis*- and *trans*-CF₃CH=CHF after 24 h at 20 °C. The alkynylxenon(II) salt was characterized by ¹³C, ¹⁹F, and ¹²⁹Xe NMR spectroscopy and displayed ¹*J*(¹³C-1–¹²⁹Xe) and ²*J*(¹³C-2–¹²⁹Xe) couplings of 343 and 69 Hz, respectively (the ³*J*(¹³C-3–¹²⁹Xe) coupling was not observed). These were the largest *J*(¹³C–¹²⁹Xe) couplings

The range of alkynylxenon(II) salts has been extended to $[R_FC\equiv CXe][BF_4]$ $[R_F=CF_3, C_3F_7, (CF_3)_2CF, cis-, trans-CF_3CF=CF, C_6F_5]$ by the reaction of XeF₂ with the corresponding perfluoroorganoethynyldifluoroboranes, $R_FC\equiv CBF_2$, in PFP or CH₂Cl₂ at -60 to -40 °C, and were isolated in 30–98% yields.⁷⁸ In contrast with the reaction of alk-1-enyldifluoroboranes, RCF=CFBF₂, with XeF₂,⁷⁵ neither the alk-1-enyltifluoroborate anions, $R_FCF=CFBF_3^-$, nor their fluorination products, XBF₃⁻ (X=RCF=CF, RCF₂CF₂), were observed.⁷⁸ Similar methods were used to synthesize the nonfluorinated organoethynylxenon (II) salts, $[C_4H_9C\equiv CXe][BF_4]$ and $[(CH_3)_3CC\equiv CXe][BF_4]$, which were obtained in 20–40% yields. All salts were soluble in aHF with the $[C_4H_9C\equiv CXe][BF_4]$ and $[(CH_3)_3CC\equiv CXe][BF_4]$ salts also having good solubilities in the weakly coordinating solvents, CH₂Cl₂ and PFP.

The aforementioned salts have been characterized in aHF by ¹H, ¹¹B, ¹³C, ¹⁹F, and ¹²⁹Xe NMR spectroscopy.⁷⁸ The ¹²⁹Xe resonances of alkynylxenonium salts range from -3601 ([(CF₃)₂CFC≡CXe][BF₄]) to -3781 ppm ([(CH₃)₃CC≡CXe] [BF₄]) with the most shielded ¹²⁹Xe resonances occurring at -3775 and -3781 ppm for [C₄H₉C≡CXe][BF₄] and [(CH₃)₃CC≡CXe][BF₄], respectively, in aHF (-60 °C). The C-1 resonances in the ¹³C spectra were unusually shielded (between 8 and -24 ppm relative to TMS). Xenon-129 satellites were observed for C-1 of the R_FC≡CXe⁺ cations which

arose from the ${}^{1}J({}^{13}C-1-{}^{129}Xe)$ coupling and which increased in the order 264, 267 Hz [$R_F = C_4H_9$, (CH_3)₃C], 308 Hz ($R_F = C_6F_5$), and 332–349 Hz ($R_F =$ perfluoroalkyl). By contrast, the opposite ordering was found for ${}^{2}J({}^{13}C-2-{}^{129}Xe)$, that is, ranges of 69–76 Hz for the alkyl groups and 64–70 Hz for the perfluoroalkyl groups.⁷⁸

1.25.3.1.1.5 Reactivities of xenon(II)–carbon bonded cations

The substitution of xenon in reactions of $[cis-C_nF_{2n+1}CF=CFXe]$ [Y] (n=0, 1, 2) with C₆H₆, I⁻, and Br⁻ in propionitrile solution has been studied.⁷⁹ To initially establish the stabilities of the salts in propionitrile, solutions containing [cis-CF₃CF=CFXe] [C₃F₇BF₃] and [cis-C₂F₅CF=CFXe][AsF₆] were studied at -50 to -60 °C where the salts were stable for 2–5 h, but at -40 °C, 80% of the [cis-C₂F₅CF=CFXe][AsF₆] was converted into cis-C₂F₅CF=CFH within 1 h. In contrast, [cis- $CF_3CF=CFXe][C_3F_7BF_3]$ was stable at -40 °C. Reaction of the aforementioned salts with [Me₄N]Br and [Me₄N]I resulted in stereospecific substitution of xenon by bromine and iodine. In the case of I⁻, a quantitative yield was obtained when a solution of [cis-CF₃CF=CFXe][C₃F₇BF₃] was added to a suspension of $[Me_4N]I$ in propionitrile and warmed from -50 to 20 °C. However, when [cis-C₂F₅CF=CFXe][AsF₆] was allowed to react with $[Bu_4N]Br$ for 2 h at -50 °C, a mixture of *cis*-C₂F₅CF=CFBr, $[Bu_4N][AsF_6]$, cis-C₂F₅CF=CFH (~15 %), and Xe⁰ formed. The reaction of [cis-CF₃CF=CFXe][C₃F₇BF₃] and $[cis-C_2F_5CF=CFXe]$ [AsF₆] with C₆H₆ resulted in the substitution of xenon by the phenyl group, producing the stereospecific products, cis-CF₃CF=CFC₆H₅ and cis-C₂F₅CF=CFC₆H₅, respectively. Mechanisms for each set of reactions have been proposed and discussed in the context of the observed products.

A similar reactivity study was carried out for alkenylxenonium(II) salts and alkynylxenonium(II) salts in aHF.⁸⁰ The stabilities of the alkynylxenonium(II) salts, $[R_FC=CXe][BF_4]$ $(R_F=CF_3, C_3F_7, (CF_3)_2CF, cis- and trans-CF_3CF=CF, C_6F_5)$, in aHF were largely dependent on the substituent, R_F , with the perfluorinated alkyl salts, $R_F=CF_3$, C_3F_7 , $(CF_3)_2CF$, showing no solvolysis or decomposition for 20–24 h at 20 °C, but salts with $R_F=CF_3CF=CF$ and C_6F_5 decomposed rapidly $(R_F=cis$ $and trans-CF_3CF=CF, total decomposition at 24 °C within 4 h;$ $<math>R_F=C_6F_5$, total decomposition at -40 °C within 1 h). A similar dependence on the R-substituent $(R=CF_2=CF, trans-HCF=CF, cis-C_2F_5CF=CF)$ was noted for alkenylxenonium(II) salts.

Reactions of the stable alkenylxenonium(II) salts, [RCF=CFXe]Y (R=cis-C₂F₅, trans-H), and alkynylxenonium(II) salt, $[C_3F_7C\equiv CXe][BF_4]$, with NaI in aHF resulted in stereospecific xenon replacement by iodine or hydrogen.⁸⁰ At -60 °C, the substitution of xenon by bromine in the perfluorinated salts [cis-CF₃CF=CFXe]Y and [trans-C₄F₉CF=CFXe]Y proceeded regio- and stereospecifically with NaBr in aHF, but after 10-30 min at -25 to -30 °C, the reaction of [cis-C₂F₅CF=CFXe]Y with NaBr, KBr, or [Bu₄N]Br in aHF gave mixtures of cis- and trans-perfluorobut-1-enyl bromides. The reaction of [C₃F₇C≡CXe][BF₄] with NaBr in aHF at −65 °C gave a 48% yield of $C_3F_7C\equiv CBr$ and was accompanied by a mixture of olefins that included C3F7C=CH, C3F7CBr=CBr2, C₃F₇CBr=CHBr, and C₃F₇CBr=CHF. Reaction pathways leading to the main products have also been considered in these studies.

1.25.3.1.1.6 Attempts to form a Xe-(4- C_5F_4N) cation and calculated gas-phase F^- affinities of selected fluoroorganodifluoroboranes, R_FBF_2

As discussed in Section 1.25.3.1.1, organodifluoroboranes, RBF₂, are generally suitable reagents to transform XeF₂ into the corresponding xenonium tetrafluoridoborate salts, [RXe] [BF₄].^{64,65,75,77,78} However, an attempt to react $(4-C_5F_4N)BF_2$, a borane of high acidity, with XeF₂ to form a Xe–C bonded xenonium salt proved to be unsuccessful.⁸¹ Instead, the reaction of $(4-C_5F_4N)BF_2$ with XeF₂ resulted in a XeF₂-borane adduct. Interestingly, the reaction of C_6F_5XeF with Cd(4- $C_5F_4N)_2$ was successful and produced $C_6F_5Xe(4-C_5F_4N)$, which is discussed in Section 1.25.3.2.1.2. The gas-phase fluoride ion affinities of selected fluoro-organodifluoroboranes, R_FBF₂, and their hydrocarbon analogs have been calculated at the B3LYP/6-31+G* level of theory and have been discussed with respect to their potential use as R_F transfer reagents for Xe–C bond formation in reactions with XeF₂.

1.25.3.1.2 Xenon derivatives of the OTeF₅ and OSeF₅ groups 1.25.3.1.2.1 [XeOTeF₅][Sb(OTeF₅)₆] · SO₂ClF

The strong oxidant salt, $[XeOTeF_5][Sb(OTeF_5)_6]$, has been formed by the stoichiometric reaction of $Xe(OTeF_5)_2$ and $Sb(OTeF_5)_3$ in SO₂ClF solvent at -20 °C (eqn [15]), yielding bright yellow to yellow–orange solutions.⁸² The synthesis and crystal structure of $[XeOTeF_5][Sb(OTeF_5)_6]$ also appear in another publication;⁸³ the findings reviewed below refer to Mercier et al.⁸²

$$2Xe(OTeF_5)_2 + Sb(OTeF_5)_3 \rightarrow [XeOTeF_5][Sb(OTeF_5)_6] + Xe$$
[15]

The solubility of $[XeOTeF_5][Sb(OTeF_5)_6]$ in SO₂ClF at -78 °C is high, exceeding 2 M, whereas the fluorine analog, $[XeF][SbF_6]$, is insoluble in SO₂ClF at room temperature. Solutions of $[XeOTeF_5][Sb(OTeF_5)_6]$ in SO₂ClF show significant decomposition after 30 min to 1 h at -10 °C. The salt was isolated as a pale yellow solvate, $[XeOTeF_5][Sb(OTeF_5)_6]$. SO₂ClF, after pumping a SO₂ClF solution for several hours at -78 to 0 °C. The solvate was stable to pumping at 0 °C for at least 4–5 h. The solid decomposes above 10 °C over a period of 4–6 h, in marked contrast with $[XeOTeF_5][SF_6]^{84-86}$ and $[XeF][SbF_6]^{87}$ which are room-temperature stable.

The strong oxidant properties of [XeOTeF₅][Sb(OTeF₅)₆] are, to a large extent, attributable to the weakly coordinating nature of the anion which renders the weak Lewis acid–base pair, F₅TeOXe⁺···OSOCIF (*vide infra*), a potent electrophile for the syntheses of salts of trihalomethyl cations in SO₂CIF solvent.⁸⁸ The syntheses were accomplished by the low-temperature oxidation of a halide ligand of the corresponding tetrahalomethane⁸⁸ in SO₂ClF solvent. Among the trihalomethyl cations that have been synthesized are CCl_3^+ , CBr_3^+ (eqns [16] and [17]), $CFCl_2^+$, and $CFBr_2^+$, as well as $C(OTeF_5)_3^+$ (eqn [17]).⁸⁸⁻⁹⁰ The carbocations have been stabilized as salts of the preformed, oxidatively resistant, and weakly coordinating Sb($OTeF_5)_6^-$ anion, thus avoiding the use of more strongly coordinating anions derived from strong Lewis acid ligand acceptors such as SbF₅.

$$[XeOTeF_5][Sb(OTeF_5)_6] + CCl_4 \rightarrow [CCl_3][Sb(OTeF_5)_6] + ClOTeF_5 + Xe$$
[16]

$$3[XeOTeF_5][Sb(OTeF_5)_6] + 3CBr_4 \rightarrow 2[CBr_3][Sb(OTeF_5)_6] + [C(OTeF_5)_3][Sb(OTeF_5)_6]$$
[17]
+3Br_2 + 3Xe

The ¹⁹F, ¹²¹Sb, ¹²⁵Te, and ¹²⁹Xe NMR spectra of [XeOTeF₅] $[Sb(OTeF_5)_6]$ have been recorded at -50 °C in SO₂ClF.⁸² The ¹⁷O NMR spectrum was recorded for an enriched [^{17,18}O]- $[XeOTeF_5][Sb(OTeF_5)_6]$ sample at -15 °C. The NMR parameters are summarized in Table 1 and are in accordance with the NMR spectra of XeOTeF5⁺ recorded in SbF5 solution⁹¹ and of $Sb(OTeF_5)_6^-$ recorded in CH₃CN solution.⁹² Although Raman spectroscopy and the X-ray crystal structure of [XeOTeF₅] [Sb(OTeF₅)₆]·SO₂ClF show that SO₂ClF is coordinated through an oxygen atom to the xenon atom of the XeOTeF $_5^+$ cation (vide infra), the ¹⁹F NMR spectrum provides no direct evidence for coordinated SO₂ClF. This is attributed to the lability of the Xe---O donor-acceptor bond in solution which results in rapid chemical exchange between bulk SO2ClF solvent molecules and coordinated SO₂ClF molecules at temperatures as low as -80 °C.

The salt crystallizes at -20 °C from SO₂ClF as [XeOTeF₅] [Sb(OTeF₅)₆]·SO₂ClF. The crystal structure consists of wellseparated XeOTeF₅⁺ cations and Sb(OTeF₅)₆⁻ anions in which each XeOTeF5⁺ cation is oxygen-coordinated to a SO_2ClF molecule (Figure 11). Unlike MF_6^- in [XeF][MF_6] (e.g., M = As, Sb, Bi)⁹³ and [XeOTeF₅][AsF₆],⁸⁶ the Sb(OTeF₅)₆⁻ anion is significantly less fluorobasic and does not interact with the coordinately unsaturated $\mathrm{XeOTeF_5}^+$ cation. Rather, the XeOTeF5⁺ cation and weak Lewis base, SO2ClF, interact by coordination of an oxygen atom of SO₂ClF to xenon (Xe---O, 2.471(5)Å). By analogy with XeF⁺ salt formation from XeF₂, which leads to a shortened terminal Xe-F bond relative to that of XeF_{2} , ^{93,94} the Xe–O(7) distance (1.969(4)Å) is shorter than in neutral Xe(OTeF₅)₂ (2.119(11)Å).⁸⁶ The Te-O(7) bond distance (1.938(5) Å) in XeOTeF₅⁺ is significantly longer than in Xe(OTeF₅)₂ $(1.843(11)\text{\AA})$,⁸⁶ consistent with the increased

Table 1The ¹⁹F, ¹²⁵Te, ¹²⁹Xe, ¹⁷O, and ¹²¹Sb NMR parameters for [XeOTeF₅][Sb(OTeF₅)₆]^a

	Chem shift (δ) (pp	m)				Coupling constan	t (Hz)	
Species XeOTeF ₅ ⁺	¹⁹ F ^b 51.7 (F _A) 40.3 (F _X)	¹²⁵ Te 579.9	¹²⁹ Xe 1459.5	¹⁷ 0 ^c 133	¹²¹ Sb	²J(¹⁹ F _A − ¹⁹ F _X) [⊅] 175	¹ J(¹⁹ F– ¹²⁵ Te) ^b 3776 (F _A) 3810 (F _X)	¹ J(¹⁹ F- ¹²³ Te)
$Sb(OTeF_5)_6^-$	$-42.4 (F_A \approx F_B)$	548.4		107	-13		3553	2950

^aReproduced with permission from Ref. 82. All NMR spectra were recorded in SO₂CIF solvent at -50 °C except the ¹⁷O spectrum, which was recorded at -15 °C. ^bThe subscripts A and B/X denote axial and equatorial fluorine atoms, respectively.

^cThe ¹⁷O NMR parameters for SO₂CIF solvent were also determined at natural abundance: doublet at δ(¹⁷O), 227.0 ppm; ²J(¹⁷O–¹⁹F), 27.9 Hz.

Figure 11 The structural unit in the X-ray crystal structure of $[XeOTeF_5]$ [Sb(OTeF₅)₆] · SO₂CIF; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J.; Suontamo, R. J. *Inorg. Chem.* **2005**, *44*, 49–60.

bond order and decreased bond length of the Xe–O(7) bond trans to it. The Te–F bond lengths of the cation and the anion are similar to those found in other OTeF₅ compounds,^{88,95,96} $[N(CH_2CH_3)_4][Sb(OTeF_5)_6]$ and $[N(CH_3)_4][Sb(OTeF_5)_6]$.⁹²

1.25.3.1.2.2 [XeOChF₅][AsF₆] and Xe(OChF₅)₂

The salt, $[XeOSeF_5][AsF_6]$, has been synthesized⁸⁶ by analogy with $[XeOTeF_5][AsF_6]^{84}$ according to eqn [18].

$$FXeOSeF_5 + AsF_5 \rightarrow [XeOSeF_5][AsF_6]$$
 [18]

Like the tellurium analog, this salt is a stable yellow solid at room temperature which sublimes under dynamic vacuum at 45 °C. The XeOSeF₅⁺ cation resists solvent attack in BrF₅ at -51 °C. The XeOTeF₅⁺ cation has been shown to undergo rapid solvolysis in BrF₅ at room temperature to form TeF₆ and [BrOF₂][AsF₆]·XeF₂.⁹¹

The ¹⁹F NMR spectrum of [XeOSeF₅][AsF₆] in SbF₅ solvent at 28 °C [BrF₅ solvent, -51 °C] consists of a first-order AX₄ spectrum which is accompanied by ⁷⁷Se ($I=1/_2$, 7.58%) satellites: $\delta(F_A)$, 57.1 [62.2] ppm; $\delta(F_X)$, 74.9 [73.3] ppm; ² $J(^{19}F_A-^{19}F_X)$, 216 [219] Hz; ¹ $J(^{19}F_A-^{77}Se)$, 1459 Hz (not resolved owing to increased line broadening in BrF₅); and ¹ $J(^{19}F_X-^{77}Se)$, 1415 [1398] Hz. The ⁷⁷Se NMR spectrum (SbF₅ solvent, 29 °C) is a single ⁷⁷Se environment at 627.5 ppm comprised of a binomial doublet of quintets resulting from the spin–spin couplings ¹ $J(^{19}F_A-^{77}Se)$ =1460 Hz and ¹ $J(^{19}F_X-^{77}Se)$ =1415 Hz. The ¹²⁹Xe spectrum in SbF₅ solvent at 25 °C [BrF₅ solvent, -56 °C] consists of a single resonance at -1349.0 [-1438] ppm in the Xe(II) region of the spectrum.⁸⁶ The [XeOChF₅][AsF₆] salts are isotypic and present the same fourfold orientational disorder of the fluorine and oxygen atoms. The AsF₆⁻ anion is fluorine-bridged to XeOChF₅⁺ through short Xe···F contacts ([XeOTeF₅][AsF₆], 2.24(3)Å; [XeOSeF₅][AsF₆], 2.31(4)Å) that are comparable to that observed in the fluorine analog, [XeF][AsF₆] (2.208(3)Å),⁹³ but significantly shorter than that in the isovalent [F₅TeN(H)Xe] [AsF₆] (2.580(3)Å) salt.⁹⁷ As in the cases of the XeF⁺ salts⁹³ and the neutral parent molecule, XeF₂,⁹³ the Xe–O bonds in [XeOChF₅][AsF₆] (Te, 1.96(4)Å; Se, 2.04(4)Å), when compared with those in neutral Xe(OChF₅)₂ (Te, 2.119(11) and 2.112(12) Å; Se, 2.16(3)Å) and FXeOSO₂F (2.155(8)Å),⁹⁸ are shorter.

Both Xe(OChF₅)₂ compounds were previously known,^{84,99} but single-crystal X-ray structures of good precision were lacking. While the structure of Xe(OTeF₅)₂ ($-127 \,^{\circ}$ C) is ordered,⁸⁶ the fluorine and oxygen atoms are orientationally threefold disordered in the selenium analog. The OChF5 groups in Xe(OChF₅)₂ and the OChF₅ group and AsF₆⁻ anion in [XeOChF₅][AsF₆] are arranged trans to each other and have Xe-O-Ch and Xe---F-As angles that are significantly less than 180° [(As-F-Xe: [XeOTeF₅][AsF₆], 135(1)°; [XeOSeF₅][AsF₆], 129(2)°), (Xe-O-M: [XeOTeF₅][AsF₆], 128(2)°; [XeOSeF₅] [AsF₆], 120(3)°; Xe(OTeF₅)₂, 122.3(5)° and 121.2(6)°; Xe(OSeF₅)₂, 123.9(13)^o)]. The bent arrangements about the bridging fluorine and oxygen atoms are in accordance with AX₂E₂ valence shell electron pair repulsion (VSEPR) arrangements.¹⁰⁰ In all structures, the geometries around the chalcogen atoms are pseudo-octahedral with cis-F-Ch-F and cis-F-Ch-O angles deviating significantly from 90° in [XeOTeF₅][AsF₆], [XeOSeF₅][AsF₆], and Xe(OSeF₅)₂ because of the disorders. The F-Te-F and F-Te-O bond angles in the ordered structure of Xe(OTeF₅)₂ are all equal to 90° within experimental error. Although the Se-O (1.58(3)Å) and Se-F (1.65(3)-1.81(2)Å) bond lengths in Xe(OSeF₅)₂ are significantly affected by disorder, the Te-O ([XeOTeF₅][AsF₆], 1.85 (3)Å; Xe(OTeF₅)₂, 1.843(11) and 1.842(11)Å), Te-F $([XeOTeF_5][AsF_6], 1.79(3)-1.84(2)Å; Xe(OTeF_5)_2, 1.823(9)-$ 1.855(11)Å), Se-O ([XeOSeF₅][AsF₆], 1.74(4)Å), and Se-F $([XeOSeF_5][AsF_6], 1.70(1)Å)$ bond lengths in $[XeOChF_5][AsF_6]$ and Xe(OTeF₅)₂ are in good agreement with values previously reported for OSeF₅ and OTeF₅ compounds.^{92,101-104}

1.25.3.1.3 Xenon-nitrogen bonded cations

The fields of noble-gas chemistry and sulfur–nitrogen–fluorine chemistry have been significantly extended by the syntheses and characterizations of four Xe–N-bonded cations derived from $N \equiv SF_3$.^{13,71,105–107} The reaction of the Lewis-acidic XeF⁺ cation with $N \equiv SF_3$ has added a further example, $F_3S \equiv NXeF^+$,⁷¹ to the large number of nitrogen base–XeF⁺ adducts that were already known.^{68,69,108,109} It was subsequently shown that the adduct-cation, $F_3S \equiv NXeF^+$, provides an entry point into a significant new chemistry through HF solvolysis of the coordinated $N \equiv SF_3$ ligand and through its HF-catalyzed and solid-state rearrangements.^{105–107}

1.25.3.1.3.1 [F₃S=NXeF][AsF₆]

The salt, $[F_3S\equiv NXeF][AsF_6]$, has been synthesized by the reaction of $[XeF][AsF_6]$ with liquid $N\equiv SF_3$ (eqn [19]) and represents the first example of xenon bound to an inorganic nitrogen base in which nitrogen is formally sp-hybridized.⁷¹

The $F_3S \equiv NXeF^+$ cation was characterized in the solid state by low-temperature Raman spectroscopy and by single-crystal X-ray diffraction.

$$N \equiv SF_3 + [XeF][AsF_6] \xrightarrow[-25 \text{ to}-15\,^{\circ}C]{N \equiv SF_3} [F_3S \equiv NXeF][AsF_6]$$
[19]

The solution characterization of $[F_3S\equiv NXeF][AsF_6]$ by ¹⁴N, ¹⁹F, and ¹²⁹Xe NMR spectroscopy⁷¹ (Figures 12 and 13) has provided unambiguous characterizations of $F_3S\equiv NXeF^+$ in aHF (-20 °C) and BrF₅ (-60 °C, given in parentheses)

Figure 12 The ¹⁹F NMR spectrum (470.592 MHz) of $[F_3S \equiv NXeF]$ [AsF₆] in BrF₅ solvent at $-60 \degree C$ showing the cation resonances: (a) the F-on-S environment; daggers (†) denote the ¹ Δ^{19} F₅(^{34/32}S) secondary isotope shift and (b) the F-on-Xe environment; asterisks (*) denote ¹²⁹Xe satellites. Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2007**, *46*, 1369–1378.

solvents (NMR parameters are provided in Table 2). The ¹²⁹Xe spectrum (Figure 13) was a doublet of 1:1:1 triplets in aHF. The outer triplet transitions were broader than the central transition owing to partial quadrupolar relaxation of ¹⁴N (I=1) which resulted from the small electric field gradient at ¹⁴N in this axially symmetric cation. The ¹²⁹Xe NMR chemical shift (-1652 (-1661) ppm) was consistent with that expected for a Xe-F moiety bound to an sp-hybridized nitrogen (cf. HC=NXeF⁺, δ (¹²⁹Xe)=1552 (-1570) ppm in aHF (BrF₅) solvent at -10 (-50) °C).⁶⁹ When the ¹²⁹Xe NMR spectrum of F₃S=NXeF⁺ was recorded in BrF₅ solvent, the ¹J(¹²⁹Xe-¹⁴N) coupling was collapsed to a doublet corresponding to ${}^{1}J({}^{129}Xe{}^{-19}F)$ due to fast quadrupolar relaxation of ¹⁴N that mainly resulted from the high viscosity of BrF₅ at -60 °C. The ¹⁴N spectrum of F₃S \equiv NXeF⁺, recorded in aHF at -20 °C, consisted of a quadrupole broadened resonance $(\Delta v_{1/2} = 750 \text{ Hz})$ at -278.0 ppm. Consequently, the expected natural abundance ¹²⁹Xe satellites were obscured. The line broadenings of the ¹⁹F resonances in HF solvent have provided indirect evidence for slow chemical exchange between HF and $F_3S \equiv NXeF^+$ (eqn [20]). The fluorine exchange rate was diminished in BrF₅ as evidenced by the narrowing of the ¹⁹F resonances:110

$$F_3S \equiv NXeF^+ + 2HF \rightleftharpoons XeF_2 + N \equiv SF_3 + H_2F^+$$
 [20]

Colorless $[F_3S\equivNXeF][AsF_6]$ was crystallized from aHF at -45 °C and its low-temperature X-ray crystal structure was determined (Figure 14). The Xe–N bond is among the longest Xe–N bonds known (2.236(4)Å),^{97,105–107,111–115} whereas the Xe–F bond length (1.938(3)Å) is significantly shorter than that of XeF₂, but longer than in XeF⁺ salts (see Section 1.25.3.1.4.1). The Xe–F and Xe–N bond lengths are similar to those of HC≡NXeF⁺ (1.936(2) and 2.235(3)Å),⁷⁰ placing $F_3S\equivNXeF^+$ among the most ionic Xe–N bonds known. The nonlinear Xe–N–S angle (142.6(3)°) contrasts with the linear angle obtained for the energy-minimized geometry and was attributed to N…F contacts within the crystallographic unit cell.

Quantum-chemical calculations at the MP2 and DFT levels of theory were used to calculate the gas-phase geometries, charges, bond orders, and valencies of $F_3S\equiv NXeF^+$ and to

Figure 13 The ¹²⁹Xe NMR spectrum (138.086 MHz) of $[F_3S \equiv NXeF][AsF_6]$ in aHF solvent at -20 °C. Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2007**, *46*, 1369–1378.

F ₃ S=NXeF ^{+ c}					$F_4S = NXe^{+d}$				
Chem. shif	ts (ppm)	T <i>(°C)</i>	Coupling constants	s (Hz)	Chem. shif	Chem. shifts (ppm)		Coupling constants (Hz)	
δ(¹²⁹ Xe)	-1652 (-1661)	-20 (-60)	$^{1}J(^{129}Xe^{-19}F_{Xe})$	6265 (6248)	δ(¹²⁹ Xe)	—2674 (—2588) [—2510]	-20 (-60) [0]		
$\delta(^{19}\text{F}_{\text{Xe}})$	-185.5 (-180.5)		J('Xe-''N)	350	δ(¹⁹ F _A)	53.6 (55.1) [58.6]	—20 (—60) [0]	$^{2}J(^{19}F_{A}-^{19}F_{B})$	206.8 (212.3) [206.3]
						[00.0]	[0]	$^{2}J(^{19}F_{A}-^{19}F_{X})$	206.5 (210.2) [209.6]
δ(¹⁹ F _S)	51.2 (53.3)		<i>ⁿJ</i> (¹⁹ F− ¹⁹ F)	(15.1), <i>n</i> =4	$\delta(^{19}F_B)$	63.8 (64.7) [^e]	—20 (—60)	$^{2}J(^{19}F_{B}-^{19}F_{X})$	[200.0] 18.2 (18.0) [21.6]
								$^{3}J(^{129}Xe^{-19}F_{B})$	203.6 (208.7) [208.9]
					δ(¹⁹ F _X)	110.2 (113.3) [110.6]	—20 (—60) [0]	³ J(¹²⁹ Xe- ¹⁹ F _X)	[200.0] 129.7 (126.7) [102.0]
δ(¹⁴ N)	-278.0								

Table 2	NMR chemical shifts and	spin-spin coupling con	stants for [F₃S≡NXe	F][AsF ₆]," [F ₄ S=NX	ίe][AsF ₆], ^{α,0} [F ₅ Τθ	eN(H)Xe][AsF ₆], [#] and
[F ₅ SN(H)Xe]][AsF ₆] ^a					

[F ₅ TeN(H)Xe][AsF ₆] ^f					$[F_{3}SN(H)Xe][AsF_{6}]^{h}$					
Chem. shift	ts (ppm)	T <i>(</i> ° <i>C)</i>	Coupling constant	ts (Hz)	Chem. shif	Chem. shifts (ppm)		Coupling constants (Hz)		
δ(¹²⁹ Xe)	-2841 (-2902) ^g	—39 (—45) ^g	${}^{1}J({}^{129}Xe{}^{-15}N)$ ${}^{2}J({}^{129}Xe{}^{-1}H)$ ${}^{3}u({}^{129}v_{2}{}^{-19}r_{2$	138 (142) ^g 240	δ(¹²⁹ Xe)	—2897 (—2956)				
δ(¹²⁵ Te)	598 ^g	-34 ^g	$^{1}J(^{125}\text{Te}-^{19}\text{F}_{e})$ $^{1}J(^{125}\text{Te}-^{19}\text{F}_{e})$ $^{1}J(^{125}\text{Te}-^{19}\text{F}_{e})$ $^{1}J(^{123}\text{Te}-^{19}\text{F}_{e})$	6 3578 ^g 3766 ^g (3113)						
$\delta(^{19}F_a)$	51.6 (51.9)	-31 (-44)	$J(19}F_{a}-19}F_{e})$	166	$\delta(^{19}F_a)$	59.0 (59.6)	-20 °C (-70 °C)	$^{2}J(^{19}F_{a}-^{19}F_{e})$	152.9 (154.7)	
$\delta(^{19}F_e)$	-43.4 (-43.2)	(,			$\delta(^{19}F_e)$	71.3 (73.0)	((,	
δ(¹⁵ N)	-268.0^{g} $(-266.3)^{g}$	-40 ^g (-45) ^g	$^{1}J(^{125}\text{Te}-^{15}\text{N})$	333 ^g		(1010)				
δ(¹ Η)	(6.90)	(-44)	$^{1}J(^{15}N-^{1}H)$	62 ^g (62) ^g	δ(¹ Η)	(9.57)				
			² J(¹²⁵ Te- ¹ H)	46 ^g (46)						

^aThe values in parentheses have been measured in BrF₅ solvent; except for F₄S=NXe⁺, which was measured in HF/BrF₅ solvent; all other values have been measured in aHF solvent. ^bThe values in square brackets were measured in N=SF₃ solvent.

^cThe secondary isotope effect of ^{32/34}S on ¹⁹F, ¹Δ¹⁹F(^{34/32}S) = -0.066 ppm, was observed in both HF and BrF₅ solvents. The fluorines bonded to Xe and S are denoted by F_{Xe} and F_S, respectively. The ¹⁴N spectrum consisted of a quadrupole broadened resonance ($\Delta v_{1/2} = 750$ Hz).

^{*d*}Secondary isotope effects were observed for $F_4S = NXe^+$ in aHF solvent; ${}^{1}\Delta^{19}F_{A}({}^{34/32}S) = -0.064$ ppm, ${}^{1}\Delta^{19}F_{B}({}^{34/32}S) = -0.055$ ppm, and ${}^{1}\Delta^{19}F_{X}({}^{34/32}S) = -0.055$ ppm. All coupling constants have positive signs based on the spectral simulations. The ${}^{3}J({}^{129}Xe^{-19}F_{A})$ coupling constant of $F_4S = NXe^+$ was too small to be resolved in all solvents. ^{*e*}The ${}^{19}F_{B}$ resonance in $N \equiv SF_3$ solvent was not observed because of overlap with the solvent.

'The axial and equatorial fluorines of the TeF₅ groups are denoted by F_a and F_e, respectively.

^gObtained from a 99.5% ¹⁵N-enriched sample of [F₅TeN(H)Xe][AsF₆].

^{*h*}The axial and equatorial fluorines are denoted by F_a and F_e, respectively. The secondary isotope shift arising from ^{32/34}S was measured in the ¹⁹F NMR spectrum in aHF solvent, ${}^{1}\Delta^{19}F_{e}({}^{24/32}S) = -0.056$ ppm and ${}^{1}\Delta^{19}F_{a}({}^{24/32}S) = -0.060$ ppm.

assign vibrational frequencies.⁷¹ The small calculated energy difference (7.9 kJ mol⁻¹) between bent and linear Xe–N–S angles indicates that the bent geometry is likely the result of crystal packing. The structural studies, natural bond orbital

analyses, and calculated gas-phase dissociation enthalpies reveal that $F_3S \equiv NXeF^+$ is among the weakest donor-acceptor adducts of XeF^+ with a Xe–N donor-acceptor bond energy that is very similar to that of HC \equiv NXeF⁺, but considerably stronger than that of F₃S=NAsF₅. Despite the low dissociation enthalpy of the F₃S=NXeF⁺ donor-acceptor bond, the observation of ¹⁹F, ¹⁴N, and ¹²⁹Xe couplings between the XeF and N=SF₃ moieties of the cation shows that the Xe–N bond is not labile in aHF or BrF₅ under the conditions at which the ¹²⁹Xe, ¹⁹F, and ¹⁴N NMR spectra were recorded.^{13,71}

1.25.3.1.3.2 $[F_4S = NXe][AsF_6]$ and $[F_4S = NXe - N \equiv SF_3][AsF_6]$

The $F_4S=NXe^+$ and $F_4S=NXe^{--}N\equiv SF_3^+$ cations provide the first examples of a noble gas bonded to an imidonitrogen.^{13,105,107} The $F_4S=NXe^+$ and $F_4S=NH_2^+$ cations are intermediates in the HF solvolysis pathways of $F_3S\equiv NXeF^+$ and provide a significant extension of the chemistry of the $F_4S=N-$ group.

The salt, $[F_4S=NXe][AsF_6]$, is derived directly from $[F_3S\equiv NXeF][AsF_6]$ by HF-catalyzed rearrangements in aHF, HF/BrF₅, and N \equiv SF₃ (Scheme 3).¹⁰⁵ The F₄S=NXe⁺ cation undergoes HF displacement to form the novel F₄S=NH₂⁺ cation and XeF₂, as well as HF addition to the S=N bond

Figure 14 The structural unit in the X-ray crystal structure of $[F_3S\equiv NXeF][AsF_6]$ at -173 °C; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2007**, *46*, 1369–1378.

to form $F_5SN(H)Xe^+$ (*vide infra*). The latter cations undergo further HF solvolyses to form $F_5SNH_3^+$, SF_6 , and NH_4^+ . The solvolysis products of $F_4S=NXe^+$ and $F_5SN(H)Xe^+$ (Scheme 4) have also been characterized by ¹²⁹Xe, ¹⁹F, ¹⁴N, and ¹H NMR spectroscopy in aHF and HF/BrF₅.

The F_4S =NXe⁺ cation has been characterized in solution by ¹⁹F and ¹²⁹Xe NMR spectroscopy (Figures 15 and 16, Table 2). Spectral simulation reproduced the fine structure and asymmetries observed in the ¹⁹F spectrum.¹⁰⁵ The ¹⁹F NMR spectrum of F_4S =NXe⁺ was interpreted in terms of the superimposition of an A₂BX spin–spin coupling pattern, which arises from the F_4S =N– group (C_s symmetry), and satellite spectra arising from an A₂BXΩ spin system that results from coupling to natural abundance ¹²⁹Xe (indicated by Ω).

The ¹²⁹Xe NMR chemical shift is consistent with that expected for xenon bound to a sp²-hybridized nitrogen, but is considerably more shielded than the ¹²⁹Xe resonances of Xe[N(SO₂CF₃)₂]₂ (-2444 ppm in SO₂ClF at 8 °C),¹¹⁴ Xe[N(SO₂F)₂]₂ (-2257 ppm in SO₂ClF at -40 °C),¹¹⁴ FXeN(SO₂F)₂ (-2009 ppm in SO₂ClF at -40 °C),¹¹⁴ XeN(SO₂F)₂ (-1943 ppm in SbF₅ at 25 °C),¹¹⁵ and F[XeN(SO₂F)₂]₂⁺ (-1943 ppm in BrF₅ at -5 °C).¹¹² The relatively high ¹²⁹Xe shielding of F₄S=NXe⁺ is in accordance with a Xe–N bond that is significantly more covalent than those of the aforementioned species,¹⁰ with a ¹²⁹Xe chemical shift that is most similar to those of xenon bound to sp³-hybridized nitrogen in F₅SN(H)Xe⁺ (-2841 ppm in HF at -45 °C).⁹⁷

The solid-state rearrangement of $[F_3S=NXeF][AsF_6]$ at 22 °C yielded bright yellow $[F_4S=NXe][AsF_6]$, which was characterized by Raman spectroscopy.¹⁰⁵ Low-temperature recrystallization of the thermally rearranged product from aHF at -50 to -67 °C afforded single crystals for a structure determination.

The $F_4S=NXe^+$ cation and the AsF_6^- anion form an ion pair by interaction through a Xe---F-As fluorine bridge (Figure 17).¹⁰⁵ The Xe-N bond is among the shortest Xe-N bonds presently known (2.084(3)Å), and the Xe---F distance of the Xe---F-As bridge is 2.618(2)Å, which is significantly less than the sum of the Xe and F van der Waals radii

Scheme 3 Proposed (a) solution and (b) solid-state rearrangements of $F_3S \equiv NXeF^+$ leading to $F_4S = NXe^+$. Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2009**, *131*, 7272–7286.

Scheme 4 Calculated relative gas-phase energies of products resulting from the HF-catalyzed rearrangement of $F_3S \equiv NXeF^+$ and HF solvolysis of $F_4S = NXe^+$ (kJ mol⁻¹; MP2/aug-cc-pVTZ(-PP)). Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2009**, *131*, 7272–7286.

 $(3.63 \text{ Å}).^{34}$ The Xe–N bond length is similar to that of $[F_5SN(H)Xe][AsF_6]$ (2.069(4)Å) (vide infra)¹⁰⁶ and is only slightly longer than the Xe–N bond in $[F_5TeN(H)Xe][AsF_6]$ (2.044(4)Å) (vide infra).⁹⁷ The xenon atom lies in the N(1), S (1), F(1), F(4)-plane and the nonlinear S–N–Xe angle is attributed to the stereochemically active valence electron lone pair of nitrogen.

The rearrangement of $[F_3S\equiv NXeF][AsF_6]$ in a large excess of liquid $N\equiv SF_3$ at 0 °C was monitored by Raman spectroscopy and yielded $[F_4S=NXe--N\equiv SF_3][AsF_6]$, which represents the first compound containing a N–Xe–N unit to have been characterized crystallographically.¹⁰⁷

Thiazyl trifluoride solvent likely induces the rearrangement of $F_3S\equiv NXeF^+$ by means of an S_N2 displacement of fluoride ion from the Xe–F group, and concomitant fluoride ion coordination to sulfur (Scheme 5). An alternative mechanism in which $N\equiv SF_3$ accepts fluoride ion from the Xe–F group of $F_3S\equiv NXeF^+$ to form $F_4S=N^-$ as an intermediate may be less likely because this anion has not been experimentally observed when F^- is directly reacted with $N\equiv SF_3$.¹¹⁶ A competing redox decomposition of $[F_4S=NXe-N\Xi SF_3][AsF_6]$ also occurs in $N\equiv SF_3$ at 0 °C which generates Xe, *cis*-N₂F₂, and $[F_3S$ $(N\equiv SF_3)_2][AsF_6]$ according to eqn [21].

$$[F_4S = NXe - N \equiv SF_3] [AsF_6] + N \equiv SF_3 \xrightarrow{N \equiv SF_3} 0^{\circ} C$$

$$[F_3S(N \equiv SF_3)_2] [AsF_6] + Xe + \frac{1}{2}cis - N_2F_2$$

$$[21]$$

The crystal structure of $[F_4S=NXe--N\equiv SF_3][AsF_6]$ consists of well-separated $F_4S=NXe--N\equiv SF_3^+$ cations and $AsF_6^$ anions (Figure 18),¹⁰⁷ with closest cation–anion $F\cdots F$ contacts that are only somewhat less than the sum of the fluorine van der Waals radii (2.94 Å).³⁴ Consequently, the $AsF_6^$ anion shows little distortion from O_h geometry.

The ligand arrangement around the sulfur atom of the cation is distorted trigonal bipyramidal, with the nitrogen

and two fluorine atoms occupying the equatorial plane and two axial fluorine atoms essentially perpendicular to that plane. The xenon atom is coplanar with the orthogonal plane defined by the N, S, and axial F atoms, and the Xe-N-S angle is bent as a result of the electron lone pair on nitrogen. The Xe(1)-N(1) bond length (2.079(3)Å) is equal, within $\pm 3\sigma$, to those of $[F_4S=NXe][AsF_6]^{105}$ and $[F_5SN(H)Xe]$ $[AsF_6]$,¹⁰⁶ somewhat longer than the Xe–N bond of $[F_5TeN]$ (H)Xe][AsF₆].⁹⁷ The S(1)–N(1) bond length (1.53993)Å) of $F_4S=N-Xe-N\equiv SF_3^+$ is also equal, within experimental error, to that of [F₄S=NXe][AsF₆].¹⁰⁵ All SF₄ bond lengths in $F_4S=N-Xe-N\equiv SF_3^+$ are the same, within $\pm 3\sigma$, as those of $[F_4S=NXe][AsF_6]^{105}$ The Xe(1)-N(1)-S(1) and N(1)–S(1)–F(1) angles of $F_4S=N-Xe-N\equiv SF_3^+$ are slightly greater than those of [F₄S=NXe][AsF₆].¹⁰⁵ All other angles that are in common with the two structures are equal to within $\pm 0.9^{\circ}$.

The short Xe(1)---N(2) contact (2.583(3)Å) is well within the sum of the nitrogen and xenon van der Waals radii $(3.71 \text{ Å})^{34}$ but considerably longer than the Xe–N bond length of [F₃S≡NXeF][AsF₆] (2.236(4)Å).⁷¹ The donor–acceptor bond length trends are in accordance with the gas-phase donor– acceptor dissociation energies calculated for F₃S≡NXeF⁺, HC≡NXeF⁺, F₄S=NXe---N≡SF₃⁺, and F₃S≡NAsF₅.¹⁰⁷

The deviation of the Xe(1)---N(2)–S(2) angle (148.0(2)°) from linearity is similar to that observed for the corresponding angle in [F₃S≡NXeF][AsF₆] (142.6(3)°)⁷¹ and is likewise attributable to crystal packing. The N(1)–Xe(1)---N(2) angle (168.4 (1)°) deviates less from linearity. The S(2)–N(2) (1.398(3)Å) and average S–F bond lengths of adducted N≡SF₃ (average 1.524(4)Å) in F₄S=NXe---N≡SF₃⁺ are shorter than those in gaseous N≡SF₃ (S–N, 1.416(3) and S–F, 1.552(6)Å).¹¹⁷ Similar S≡N and S–F bond length contractions have been observed in F₃S≡NAsF₅ (1.383 and 1.439 Å)¹¹⁶ and [F₃S≡NXeF][AsF₆] (1.397(5) and 1.503(3)Å).⁷¹

Figure 15 The ¹⁹F NMR spectrum (470.592 MHz) of $F_4S = NXe^+$ in aHF solvent at $-20 \degree C$ (left-hand traces) and simulated spectrum (right-hand traces) depicting (a) F_A , (b) F_B , and (c) F_X ; symbols denote the ${}^1\Delta^{19}F({}^{34/32}S)$ secondary isotope shifts (†) and ${}^{129}Xe$ satellites (*) in the experimental spectrum. Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2009**, *131*, 7272–7286.

The N–S–F and F–S–F angles in the adducted N \equiv SF₃ molecule average 121.4(2)° and 95.4(2)°, respectively, comprising a distorted tetrahedral arrangement about sulfur that is similar to those of N \equiv SF₃^{117,118} and its adducts.^{71,116,119,120}

1.25.3.1.3.3 [F₅TeN(H)Xe][AsF₆]

Prior to the synthesis of $[F_5SN(H)Xe][AsF_6]$ (*vide infra*), $[F_5TeN(H)Xe][AsF_6]$ had been synthesized as the natural abundance and 99.5% ¹⁵N-enriched compounds.⁹⁷ The

 F_5 TeN(H)Xe⁺ cation was obtained as the product of the reactions of [F_5 TeNH₃][AsF₆] with XeF₂ (HF and BrF₅ solvents) and F_5 TeNH₂ with [XeF][AsF₆] (HF solvent) (eqns [22]–[25]) and characterized in solution by ¹²⁹Xe, ¹⁹F, ¹²⁵Te, ¹H, and ¹⁵N NMR spectroscopy at -60 to -30 °C (see Table 2 for NMR parameters). The ¹⁹F NMR spectra of F_5 TeN(H)Xe⁺ in aHF (-31 °C) and in BrF₅ (-44 °C) consisted of AX₄ spin–spin coupling patterns that arose from the pseudo-octahedral F_5 TeN-group.⁹⁷

$$[XeF][AsF_6] + 2HF \rightleftharpoons XeF_2 + [H_2F][AsF_6]$$
[22]

 $F_5 TeNH_2 + [H_2F][AsF_6] \rightarrow [F_5 TeNH_3][AsF_6] + HF$ ^[23]

 $F_5 \text{TeNH}_2 + (n+2)\text{HF} \rightarrow [F_5 \text{TeNH}_3][\text{HF}_2 \cdot n\text{HF}]$ [24]

$$[F_5TeNH_3][AsF_6] + XeF_2 \rightleftharpoons [F_5TeN(H)Xe][AsF_6] + 2HF \quad [25]$$

Figure 16 The ¹²⁹Xe NMR spectrum (138.086 MHz) of $F_4S=NXe^+$ in HF solvent at -20 °C (upper trace) and simulated spectrum (lower trace). Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2009**, *131*, 7272–7286.

Figure 17 The structural unit in the X-ray crystal structure of $[F_4S=NXe][AsF_6]$; thermal ellipsoids are shown at the 50% probability level. Modified from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2009**, *131*, 7272–7286.

The $F_5TeN(H)Xe^+$ cation is markedly less stable than the isoelectronic F_5TeOXe^+ cation and is among the least stable Xe–N-bonded species reported to date. Its relative instability is attributed to the lower electronegativity of the $F_5TeN(H)$ ligand, which is reflected in the high shielding of the ¹²⁹Xe NMR resonance of $F_5TeN(H)Xe^+$ (*vide infra*) relative to that of F_5TeOXe^+ , and is consistent with the Xe–N bond in this cation being one of the most covalent Xe–N bonds known. The decomposition of $F_5TeN(H)Xe^+$ in HF and BrF₅ solutions at -33 °C was monitored by ¹²⁹Xe, ¹⁹F, ¹H, and ¹⁵N NMR spectroscopy and is consistent with eqns [22]–[25] and [26], with resonances arising from the $F_5TeNH_3^+$ cation, XeF₂, TeF₆ (aHF solvent), and trace amounts of F_5TeNF_2 (*vide infra*).

$$[F_5TeNH_3][AsF_6]/[HF_2 \cdot nHF] + HF \rightarrow TeF_6 + [NH_4][AsF_6]/[HF_2 \cdot nHF]$$

$$[26]$$

At initial XeF₂ and [F₅TeNH₃][AsF₆] concentrations of 0.38 and 0.36 M, respectively, in BrF₅ at -60 °C, the relative concentrations, [F₅TeNH₃⁺]:[F₅TeN(H)Xe⁺], were 1.0:1.2 based on integration of the ¹⁹F NMR spectrum after warming the initial sample mixture to -40 °C for 10 min. The equilibrium ratio, [F₅TeNH₃⁺]:[F₅TeN(H)Xe⁺], was 1.0:0.3 when initial [XeF][AsF₆] and F₅TeNH₂ concentrations of 0.71 M in aHF at -33 °C were used. The lower concentration of F₅TeN(H)Xe⁺ in aHF is attributed to suppression of the HF elimination reaction (eqn [25]). The observation of XeF₂ in the ¹⁹F and ¹²⁹Xe NMR spectra is also in accordance with eqn [25]. The XeF₂ resonance in the ¹⁹F NMR spectrum in BrF₅ was observed at -184.1 ppm [¹J(¹²⁹Xe⁻¹⁹F)=5621 Hz] along with a doublet assigned to HF at -192.8 ppm [¹J(¹⁹F⁻¹H)=527 Hz].

The ¹²⁹Xe chemical shift of F₅TeN(H)Xe⁺ (-2841 ppm, HF solvent, -39 °C) is similar to those of F₅SN(H)Xe⁺ (-2886 ppm, HF solvent, -20 °C) and F₄S=NXe⁺ (-2672 ppm, HF, -20 °C) and is considerably more shielded than in (FSO₂)₂NXe⁺ (-1943 ppm, SbF₅ solvent, 25 °C)¹¹⁵ and isoelectronic F₅TeOXe⁺ (-1472 ppm, SbF₅ solvent, 5 °C).⁹¹

Orange [F₅TeN(H)Xe][AsF₆] and colorless [F₅TeNH₃][AsF₆] were crystallized as a mixture from aHF (-35 °C) and were characterized by Raman spectroscopy (-165 °C) and by X-ray crystallography (-109 °C).⁹⁷ The F₅TeN(H)Xe⁺ cation and the AsF₆⁻ anion form an ion pair by interaction through a Xe---F-As fluorine bridge (Figure 19). The Xe-N bond length (2.044(4)Å) is comparable to that observed in [XeN(SO₂F)₂] [Sb₃F₁₆] (2.02(1)Å),¹¹⁶ but is significantly shorter than that in FXeN(SO₂F)₂ (2.200(3)Å).¹¹³ The Xe---F bridge bond (2.580(3)Å) is approximately 1.0 Å shorter than the sum of the xenon and fluorine van der Waals radii ³⁴ but is significantly longer than the terminal Xe--F bond in FXeN(SO₂F)₂ (1.967(3)Å)¹¹³ and the bridging Xe---F bond distances in [XeN (SO₂F)₂][Sb₃F₁₆] (2.457(8)Å)¹¹⁶ and [XeF][AsF₆] (2.208(3)Å).⁹³

Scheme 5 Proposed mechanism for the $N \equiv SF_3$ promoted rearrangement of $F_3S \equiv NXeF^+$. Reproduced with permission from Smith, G. L.; Schrobilgen, G. J. *Inorg. Chem.* **2009**, *48*, 7714–7728.

The Xe, Te, and H atoms in [F₅TeN(H)Xe][AsF₆] form a near-tetrahedral (sp³-hybridized) arrangement about nitrogen having a bond angle sum (331.1(3)°) that is only slightly larger than the sum of the ideal tetrahedral angles $(3 \times 109.5^{\circ} = 328.5^{\circ})$, whereas the XeNS₂ arrangements in $FXeN(SO_2F)_2^{113}$ and $[XeN(SO_2F)_2][Sb_3F_{16}]^{116}$ are planar (sp²-hybridized) having bond angle sums of 359.9 and 359.6°, respectively. The N-Xe---F angle (171.6(2)°) in [F5TeN(H)Xe] [AsF₆] is significantly less than that of $[XeN(SO_2F)_2][Sb_3F_{16}]$ (178.3(3)°).¹¹⁶ The distortion from linearity appears to be inconsistent with a linear AX2E3 VSEPR arrangement and may result from several fluorine contacts which are within the sum of fluorine and xenon van der Waals radii and avoid the electron lone pairs of xenon. Similar deviations from linearity were also obtained for the energy-minimized gas-phase geometries and therefore are unlikely to be attributable to packing effects alone.

1.25.3.1.3.4 [F₅SN(H)Xe][AsF₆]

Solvolysis of $[F_3S=NXeF][AsF_6]$ in aHF (~4 h at -20 °C) led to $[F_5SN(H)Xe][AsF_6]$ formation (eqn [27]).¹⁰⁶ The salt, obtained as transparent yellow plates, was characterized by Raman spectroscopy (-45 °C). The $F_5SN(H)Xe^+$ cation

Figure 18 The structural unit in the X-ray crystal structure of $[F_4S=NXe--N\equiv SF_3][ASF_6]$. Thermal ellipsoids are shown at the 50% probability level. Modified from Smith, G. L.; Schrobilgen, G. J. *Inorg. Chem.* **2009**, *48*, 7714–7728.

Figure 19 The structural unit in the X-ray crystal structure of [F_5 TeN(H) Xe][As F_6]; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Fir, B.; Whalen, J. M.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2006**, *45*, 1978–1996.

was also formed by reaction of $[F_5SNH_3][AsF_6]$ with XeF_2 in aHF and BrF_5 (-30 °C, ca. 30 min) (eqn [28]) and was

$$[F_3S \equiv NXeF][AsF_6] + HF \xrightarrow{-20^{\circ}C}_{HF} [F_5SN(H)Xe][AsF_6]$$
[27]

$$[F_5SNH_3][AsF_6] + XeF_2 \frac{HF \text{ or }}{BrF_5} [F_5SN(H)Xe][AsF_6]$$

$$+ 2HF$$
[28]

characterized by ¹⁹F NMR spectroscopy (at -20 °C and supercooled to -70 °C, respectively). In both syntheses, $F_5SNH_3^+$ and $F_5SN(H)Xe^+$ were observed in equilibrium with XeF₂ and HF. In BrF₅ and aHF solutions below -20 °C, equilibrium [28] exists, but in aHF above -20 °C, no $F_5SN(H)Xe^+$ was observed. Analogous equilibria have been noted for $F_5TeNH_3^+$ and $F_5TeN(H)Xe^+$ (*vide supra*).

The NMR spectra are consistent with eqns [27] and [28] and Scheme 4 in which resonances arising from $F_5SNH_3^+$, SF_{67} , and NH_4^+ were also observed. The ¹⁹F NMR spectrum of the $F_5SN(H)Xe^+$ cation was an AB₄ spin–spin coupling pattern that arose from the square-pyramidal F_5S group (Table 2).¹⁰⁶ The ¹²⁹Xe NMR spectrum consisted of a singlet at –2897 (aHF) (–2956, BrF₅) ppm.¹⁰⁶ The high ¹²⁹Xe shielding places the Xe–N bond among the most covalent Xe–N bonds formed by xenon and is very similar to that of $F_5TeN(H)Xe^+$ (vide infra).

The decompositions of $[F_5SNH_3][AsF_6]$ and $[F_5SN(H)Xe]$ [AsF₆], monitored in aHF at 0 °C by ¹⁹F NMR spectroscopy, were consistent with Scheme 4. The $F_5SN(H)Xe^+$ cation underwent solvolysis to form $F_5SNH_3^+$ and XeF_2 according to the reverse of eqn [28]. Solvolysis of the $F_5SNH_3^+$ cation (eqn [29]) led to SF₆ and NH₄⁺.

$$[F_5SNH_3][AsF_6] + HF \xrightarrow{-20 \text{ to } 0 \, ^\circ \text{C}} SF_6 + [NH_4][AsF_6]$$

$$[29]$$

Small amounts of F_5SNF_2 also formed in the course of $F_5SN(H)Xe^+$ decompositions in BrF_5 and aHF. The formation of F_5SNF_2 likely resulted from a series of reactions analogous to those that led to minor amounts of F_5TeNF_2 encountered in the decomposition of the $F_5TeN(H)Xe^+$ cation.⁹⁷

The F_5 SN(H)Xe⁺ cation and the As F_6^- anion form an ion pair similar to that of the tellurium analog⁹⁷ by interaction through a Xe---F-As fluorine bridge (Figure 20).¹⁰⁶ The crystal structures of [F_5 SN(H)Xe][As F_6] (Figure 20)¹⁰⁶ and [F_5 TeN(H)Xe][As F_6] (Figure 19)⁹⁷ are isotypes. The Xe-N (2.069(4)Å) and Xe-F(6) (2.634(4)Å) bond lengths of [F_5 SN(H)Xe][As F_6] are somewhat longer than their counterparts in the tellurium analog (2.044(4) and 2.580(3), respectively), while the Xe-N-H, N-Xe---F(6) and S/Te-N-Xe angles are all equal within

Figure 20 The structural unit in the X-ray crystal structure of $[F_5SN(H) Xe][AsF_6]$; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2008**, *47*, 4173–4184.

experimental error. As expected, the S–N (1.761(4)Å), S– F_{ax} (1.559(3)Å), and average S– F_{eq} (1.573(4)Å) bond lengths are shorter when compared with the Te–N (1.982(5)Å), Te– F_{ax} (1.791(4)Å), and average Te– F_{eq} (1.811(5)Å) bond lengths of [F_5 TeN(H)Xe][As F_6].

1.25.3.1.4 Xenon halides and oxide fluorides 1.25.3.1.4.1 XeX⁺ (X=F, Cl) salts

The fluoride ion donor properties of XeF₂ toward the strong Lewis acids AsF₅,^{121,122} SbF₅,¹²²⁻¹²⁴ and BiF₅ ¹²⁵ are well established. The crystal structures of [XeF][SbF₆], [XeF][BiF₆], and [XeF][Bi₂F₁₁] were determined for the first time and those of XeF₂, [XeF][AsF₆], [XeF][Sb₂F₁₁], and [XeF₃][Sb₂F₁₁] were redetermined with greater precision.⁹³ The [XeF][MF₆] (M=As, Sb, Bi) salts were prepared by dissolution of 1:1 molar ratios of XeF₂ and MF₅ in aHF. Crystals of these salts were obtained by slowly cooling their aHF solutions, followed by the removal of the solvent as previously described.^{126,127}

The [XeF][Sb₂F₁₁] salt was prepared by the direct reaction of XeF₂ with excess liquid SbF₅.^{93,128} Single crystals were obtained by allowing a SbF₅ solution of the salt to cool from 45 °C to ambient temperature over the course of several days. The [XeF] [Bi₂F₁₁] salt was prepared by allowing a 1:2 molar ratio of XeF₂ and BiF₅ to react in aHF.^{93,125} Crystals suitable for X-ray structure determination were obtained by slow removal of the solvent under vacuum at -48 °C.⁹³ The attempted isolation of crystalline [XeF][Bi₂F₁₁] by slowly cooling a dilute HF solution containing a 2:1 molar ratio of BiF₅/XeF₂ resulted in the crystallization of [XeF][Bi₆], which is consistent with an equilibrium between Bi₂F₁₁⁻ and BiF₅/BiF₆⁻ (eqn [30]) that shifts to the right when the solution concentration is low.

$$Bi_2F_{11} \rightleftharpoons BiF_5 + BiF_6$$
 [30]

Isolation of $[XeF][BiF_6]$ under dilute conditions is also expected to be favored by its lower solubility relative to that of $[XeF][Bi_2F_{11}]$. The greater lattice energy calculated for [XeF] $[BiF_6]$ (536 kJ mol⁻¹) compared to that of $[XeF][Bi_2F_{11}]$ (471 kJ mol⁻¹) (*vide infra*) likely also contributes to the lower solubility of $[XeF][BiF_6]$ and its preferential crystallization. Attempts to prepare $[XeF][As_2F_{11}]$ by the reaction of [XeF] $[AsF_6]$ with a 15-fold molar excess of liquid AsF₅ at -30 and -78 °C and by the reaction of a 15-fold molar excess of AsF₅ dissolved in aHF (50/50 v/v) at -40 °C were unsuccessful and led to the recovery of only [XeF][AsF₆].⁹³ Failure to isolate [XeF] [As₂F₁₁] under these conditions is consistent with volume-based thermodynamic calculations (see Section 1.25.8).⁹³

The X-ray crystal structures of XeF₂, [XeF][MF₆] (M=As, Sb, Bi), and [XeF][M₂F₁₁] (M=Sb, Bi) were determined at $-173 \,^{\circ}C.^{93}$ Although the crystal structure of XeF₂ had been previously reported, ¹²⁹⁻¹³¹ a higher precision crystal structure was obtained in order to provide a more accurate Xe–F bond length (1.999(4)Å).⁹³ The geometrical parameters for [XeF] [MF₆] (M=As, Sb, Bi) and [XeF][M₂F₁₁] (M=Sb, Bi) are summarized in Figures 21 and 22 and have been compared with the high-precision crystal structure of XeF₂ ⁹³ and the previously reported structures of [XeF][RuF₆],¹³² [XeF][AsF₆],¹²¹ and [XeF][Sb₂F₁₁].^{123,124}

The XeF⁺ cations in [XeF][MF₆] (M=As, Sb, Bi) and [XeF] $[M_2F_{11}]$ (M=Sb, Bi) are strongly coordinated to their MF₆⁻ and $M_2F_{11}^{-}$ counteranions through fluorine bridges.⁹³ The $Xe-F_t$ (F_t terminal fluorine) bond lengths in [XeF][AsF_6] $(1.888(3)\text{\AA})$, $[XeF][SbF_6]$ $(1.885(2)\text{\AA})$, and $[XeF][Sb_2F_{11}]$ $(1.888(4)\text{\AA})$ are not significantly different, within $\pm 3\sigma$, but are shorter than those of [XeF][BiF₆] (1.913(7)Å) and [XeF] $[Bi_2F_{11}]$ (1.909(6)Å). Overall, the Xe-F_t bond lengths are shorter than those of crystalline⁹³ and gaseous XeF₂.^{133,134} This trend has also been noted for the Kr-Ft bond lengths of $[KrF][MF_6]$ (M=As, Sb, Bi, Au) relative to the Kr-F bond length of α -KrF₂¹²⁶ (see Section 1.25.7.2) and is consistent with three-center-four-electron M.O. descriptions for NgF2 ¹³⁵ and resonance structures I and II which predict formal Ng-F bond orders of one-half for NgF₂ and one for the free NgF⁺ cations:

$$\begin{array}{ccc} F^{-\,+}Ng-F & \leftrightarrow & F-Ng^{+}F^{-}\\ I & & II \end{array}$$

The Xe---F_b and M---F_b (F_b, bridging fluorine) bond lengths are longer than those of XeF₂ and the terminal M—F bond lengths of their counteranions. While the Xe---F_b bond lengths differ little among [XeF][AsF₆] (2.208(3)Å), [XeF][BiF₆] (2.204(7)Å), and [XeF][RuF₆] (2.182(15)Å),¹³² this bond is significantly longer in [XeF][SbF₆] (2.278(2)Å). The M---F_b

Figure 21 The structural units in the X-ray crystal structures of the (a) [XeF][AsF₆], (b) [XeF][SbF₆], (c) [XeF][BiF₆], and (d) [XeF][Sb₂F₁₁] salts with thermal ellipsoids drawn at the 50% probability level. Reproduced with permission from Elliott, H. St. A.; Lehmann, J.; Mercier, H.P.A.; Jenkins, H. D.; Schrobilgen, G. J. *Inorg. Chem.* **2010**, 49, 8504–8523.

Figure 22 The structural unit in the X-ray crystal structure of [XeF] [Bi₂F₁₁], with thermal ellipsoids drawn at the 50% probability level. Reproduced with permission from Elliott, H. St. A.; Lehmann, J.; Mercier, H. P.A.; Jenkins, H. D.; Schrobilgen, G. J. *Inorg. Chem.* **2010**, 49, 8504–8523.

bond lengths – $[XeF][AsF_6]$ (1.838(3)Å), $[XeF][SbF_6]$ (1.971 (2)Å), $[XeF][BiF_6]$ (2.108(7)Å), $[XeF][Sb_2F_{11}]$ (1.930(3)Å), and $[XeF][Bi_2F_{11}]$ (2.075(6)Å) – are longer than the average terminal M–F bond lengths of the anions (1.697(7), 1.863(4), 1.960(15), 1.855(10), and 1.952(17)Å, respectively).

The Xe---F_b---M angles are bent and are consistent with AX_2YE_2 VSEPR arrangements at their respective fluorine bridge atoms. Because of the high ionic characters of these bonds, these angles are significantly more open than the ideal tetrahedral angle. The F_t-Xe---F_b angles are highly deformable, and are likely influenced by crystal packing. The F--Xe---F_b bond angles, which are predicted to be linear (AX_2E_3 VSEPR arrangements), are slightly bent, within $\pm 3\sigma$, in the structures of [XeF] [SbF₆] (177.94(9)°), [XeF][AsF₆] (179.1(2)°), [XeF][BiF₆] (178.4(3)°), [XeF][Sb_2F_{11}] (179.3(2)°), and [XeF][BiF₆] (178.9(3)°). Similar F--Kr---F_b angles have been noted for the [KrF][MF₆] salts.¹²⁶ These angles are reproduced in the calculated gas-phase structures of the [NgF][MF₆] (Ng=Kr, Xe; M=As, Sb, Bi) ion pairs.

The salt, $[XeF][Bi_2F_{11}]$, has provided the first crystallographic characterization of the $Bi_2F_{11}^-$ anion. Like its lighter arsenic and antimony analogs, the $Bi_2F_{11}^-$ anion is comprised of two pseudo-octahedrally coordinated pnictogen atoms bridged by a fluorine atom (F_b') (Figure 22). The Bi---F_b'---Bi bond angle $(145.3(3)^\circ)$ is similar to the Sb---F_b'---Sb $(146.0(2)^\circ)$ bond angle in $[XeF][Sb_2F_{11}]$. Although $[XeF][As_2F_{11}]^-$ remains unknown, similar bond angles have been reported for $As_2F_{11}^{-136-138}$

The calculated gas-phase geometries of the [NgF][MF₆] (Ng=Kr, Xe) ion pairs have been compared with their crystal structures⁹³ (also see Lehmann et al. ¹²⁶ for the [KrF][MF₆] structures). The optimized geometries of the [NgF][MF₆] ion pairs have staggered conformations, with the exception of [XeF][AsF₆] which displays a staggered geometry in its crystal structure. The vibrational spectra obtained from these energy-minimized structures have been used to assign the Raman spectra of the [NgF][MF₆] (M=As, Sb, Bi) salts in greater detail. Reasonable agreement was obtained for the Ng–F_t stretching frequencies; however, the calculations showed that the Ng--F_b

and M---F_b stretches are in-phase and out-of-phase coupled. The natural bond orbital (NBO) analyses of calculated structures indicate that the [XeF][MF₆] salts are more ionic than the [KrF][MF₆] salts, attesting to the greater fluoride ion donor strength of XeF₂ relative to that of KrF₂.⁹³

1.25.3.1.4.2 The nature of $(Xe][PtF_6]'$ and its relationship to XeF^+ salts

The reaction which provided the first example of a noble-gas compound has been critically reexamined by Neil Bartlett,⁸ the discoverer of noble-gas reactivity. His original reaction³ involved the interaction of PtF₆ vapor with a large stoichiometric excess of Xe gas, yielding a mustard-yellow solid which approached a 1:1 stoichiometry and was initially formulated as [Xe][PtF₆]. When the amount of PtF₆ exceeded the stoichiometric amount of Xe, the product was a sticky, deep red solid which approached the composition $Xe(PtF_6)_2$. In the latter case, and whenever the stoichiometry was significantly greater than 1:1, X-ray powder diffraction (XRPD) revealed the presence of [XeF][PtF₆].¹³⁹ It was concluded that the initial product of the oxidation of Xe by PtF₆ interacts with additional PtF₆ to give [XeF][PtF₆] and PtF₅ (eqn [31]).⁸ Further warming of the mixture at <60 °C converted it to a red-orange, friable solid, $[XeF][Pt_2F_{11}]$, according to eqn [32].

$$[Xe][PtF_6] + PtF_6 \rightarrow [XeF][PtF_6] + PtF_5$$
[31]

$$[XeF][PtF_6] + PtF_5 \rightarrow [XeF][Pt_2F_{11}]$$

$$[32]$$

Mixing PtF₆ vapor (diluted with SF₆ gas) with a large excess of Xe gas also gave a mustard-yellow solid having the composition, XePtF₆, which did not give an XRPD pattern.⁸ Dissolution of PtF₄, along with a large excess of XeF₂ in aHF, yielded a yellow solution which showed the presence of PtF₆²⁻ in the ¹⁹F NMR spectrum. A diamagnetic, amorphous, aHF-insoluble solid of composition XePtF₆ obtained from that solution is probably a XeF⁺ salt of polymeric (PtF₅⁻)_n and the 1:1 product of Xe + PtF₆ is also likely to have this formulation.

1.25.3.1.4.3 Xe₂F₃⁺ salts

X-ray crystal structures have been obtained for monoclinic $[Xe_2F_3][AsF_6]$, monoclinic *C*-centered $[Xe_2F_3][SbF_6]$,¹⁴⁰ and triclinic $[Xe_2F_3][AsF_6]$.¹⁴⁰ The $Xe_2F_3^+$ cations are planar, V-shaped, and symmetrical about the bridging F_b atom with essentially undistorted AsF_6^- anions.

The crystal structure of monoclinic [Xe₂F₃][AsF₆] has been redetermined at higher precision. As in the earlier structure,¹⁴¹ two crystallographically nonequivalent $Xe_2F_3^+$ cations and two AsF_6^- anions were found in the asymmetric unit, whereas only one Xe₂F₃⁺ cation and one SbF₆⁻ anion are defined in the asymmetric unit of monoclinic [Xe₂F₃][SbF₆]. A lower R-factor for the more recent structure of [Xe2F3][AsF6] resulted, in part, from the refinement of a twofold orientationally disordered AsF_6^- anion which was not resolved in the earlier study. The terminal Xe– F_t (As: 1.929(6), 1.908(7), 1.908(6)Å; Sb: 1.922(9), 1.918(9)Å) and bridging Xe---F_b (As: 2.157(3), 2.142(7), 2.148(7) Å; Sb: 2.141(8), 2.146(8) Å) bond distances are comparable in both salts, but the bridge Xe---Fb---Xe angles (As: 149.5(4) and 148.6(4)°; Sb: 160.3(3)°) and terminal F_t-Xe---F_b (As: 177.6(3), 177.3(4), 177.7(3)°; Sb: 148.6(4)°, 149.5(4)°) moieties are significantly more open in the

 AsF_6^- salt than in the SbF_6^- salt. The $Xe_2F_3^+$ cation in triclinic $[Xe_2F_3][AsF_6]$ is twofold disordered in the triclinic phase, and only allowed the accurate determination of the Xe---F_b---Xe angle (139.8(8)°), which is significantly more closed than in the monoclinic phase.¹⁴⁰

Quantum-chemical calculations of the vibrational frequencies of $Xe_2F_3^+$ have also been carried out and give a very low frequency for the bending mode of the Xe---F_b---Xe bridge that is indicative of the deformability of this angle. The X-ray crystal structures also demonstrate the deformability of the Xe---F---Xe bridge angle and its strong dependence on the crystal packing and on the nature of the counter anion.

1.25.3.1.4.4 [XeCI][Sb₂F₁₁]

Prior examples of Xe–Cl bonds include XeCl₂ which has been produced in a matrix.^{142–145} The X-ray crystal structures of 2.25 MCl·XeO₃ (M=Rb, Cs) feature infinite chains of XeO₃Cl⁻ anions linked by nearly linear chlorine bridges in which Xe…Cl distances range from 2.75(5) to 2.97(1)Å.¹⁴⁶ More recently, (C₆F₅Xe)₂Cl⁺ was prepared from C₆F₅Xe⁺ and (CH₃)₃SiCl.¹⁴⁷ The distances between Xe and Cl in the X-ray crystal structure are 2.847(1) and 2.784(2)Å with a Xe--Cl---Xe bond angle of 116.96(8)°. The neutral chloride, C₆F₅XeCl, has been isolated starting from C₆F₅Xe⁺ and 4-ClC₅H₄N·HCl. Because of the instability of C₆F₅XeCl in solution, no detailed structural information is available, but it can be assumed that it contains a Xe–Cl bond.¹⁴⁷

Because the bond of XeF⁺ is stronger than in XeF₂, the XeCl⁺ ion may be expected to be the most stable xenonchlorine-bonded species. The XeCl⁺ cation has been obtained as its Sb₂F₁₁⁻ salt by reaction of [XeF][SbF₆] in HF/SbF₅ solution with small amounts of SbCl₅.¹⁴⁸ Besides nucleophilic Cl/F metathesis (eqn [33]), oxidation of Cl⁻ also occurs, leading to an intermediate blue solution which is stable for some time at room temperature. The blue solution is suspected to contain $Cl_4^{+.149}$ Solution decomposition of Cl_4^{+} to Cl_3^{+149} resulted in a color change from blue to green and finally to orange, from which orange crystals (melting at ca.-20 °C with partial decomposition) were obtained on slow cooling of the solution to -30 °C. Solid [XeCl][Sb₂F₁₁] obtained in this manner decomposed at room temperature according to eqn [34].

 $XeF^+(yellow) + CI^- \rightarrow XeCl^+(orange) + F^-$ [33]

$$2[XeCl][Sb_2F_{11}] \rightarrow Xe + Cl_2 + [XeF][Sb_2F_{11}] + 2SbF_5$$
 [34]

The crystallographic unit cell contained two distinct, but very similar, [XeCl][Sb₂F₁₁] units (Figure 23). The Xe–Cl distances were marginally shorter (2.309(2) and 2.304(2)Å) than any Xe–Cl distances measured to date and corresponded to Xe–Cl single bonds, as predicted by ab initio calculations (2.301 Å). For comparison, isoelectronic ICl has an I–Cl bond length of 2.303 Å in the gaseous state and 2.351 Å in the solid state.^{150,151} Similar to the salts of the XeF^{+ 93} and KrF^{+ 126} cations, a contact was observed between the XeCl⁺ ion and a F atom of the Sb₂F₁₁⁻ ion of each structural unit, which resulted in almost linear Cl–Xe---F arrangements (174.6(1) and 175.2(1)°) and Xe---F distances of 2.644(4) and 2.612(4)Å. These Xe---F distances are shorter than the Xe---Cl bond lengths observed in the (C₆F₅Xe)₂Cl⁺ cation (2.847(2) and 2.784(2)Å) which has a Xe---Cl---Xe bond angle of 116.96(8)°.¹⁴⁷

Figure 23 One of the structural units in the X-ray crystal structure of $[XeCI][Sb_2F_{11}]$ with thermal ellipsoids drawn at the 50% probability level. Reproduced with permission from Siedel, S.; Seppelt, K. *Angew. Chem.*, *Int. Ed.* **2001**, *40*, 4225–4227.

The ¹²⁹Xe NMR spectrum of XeCl⁺ in HF/SbF₅ solvent consisted of a very broad saddle-shaped resonance. The saddle shape arose from the partially quadrupole-collapsed pair of overlapping 1:1:1:1 quartets that result from spin-spin couplings between ^{35/37}Cl (I=³/₂) and ¹²⁹Xe. The Raman spectrum is also in accord with [XeCl][Sb₂F₁₁] salt formulation, with a Raman band at 391 cm⁻¹ (calculated 390.2 cm⁻¹) assigned to the Xe–Cl stretching frequency, with the remaining bands being typical of the Sb₂F₁₁⁻ ion.¹⁵²

1.25.3.1.4.5 $Xe_3OF_3^+$ salts and $H_3O^+ \cdot XeF_2$

A report of the synthesis of the H_2OF^+ cation by oxidative fluorination of H_2O by [XeF][PnF₆] (Pn=As, Sb)¹⁵³ in aHF solution was reinvestigated and shown to exhibit a more complex chemistry than had been previously indicated.¹⁵⁴ Two new Xe(II) compounds, [Xe₃OF₃][PnF₆] and [H₃O][PnF₆]. 2XeF₂ (Pn=As, Sb), were discovered with no evidence for the H₂OF⁺ cation (eqns [35] and [36]).¹⁵⁴

 $3XeF_2 + [H_3O][PnF_6] \rightarrow [Xe_3OF_3][PnF_6] + 3HF$ [35]

$$[H_3O][AsF_6] + 2XeF_2 \rightarrow [H_3O][AsF_6] \cdot 2XeF_2$$
 [36]

The compounds were isolated and characterized by vibrational spectroscopy and single-crystal X-ray diffraction. The X-ray crystal structures of the [Xe₃OF₃][PnF₆] salts (Figure 24 (a), only the SbF_6^- salt is shown) represent the first examples of an isolated and structurally characterized Xe(II) oxide fluoride. The bridging oxygen and fluorine atoms are positionally disordered, leading to equal splitting of the Xe(2) positions between a longer Xe(2)-F/O (As: 2.502(10)Å; Sb: 2.513(6)Å) and a shorter Xe(2)-O/F (As: 1.919(9) Å; Sb: 1.908(6) Å) bond in the Z-shaped FXeOXeFXeF⁺ cations. The terminal Xe-F bond lengths (As: 1.992(6) and 1.977(6)Å; Sb: 1.975(6)Å) and the F-Xe(1)-F/O bond angles (As: 177.4(5) and 178.2 $(5)^{\circ}$; Sb: 178.6(3)°) were unaffected by the disorder. The cation was therefore shown to contain three xenon atoms, two terminal fluorine atoms, one bridging fluorine atom, and one bridging oxygen atom. The presence of oxygen in the cation was confirmed by ¹⁸O substitution and ^{16/18}O isotopic shifts in the Raman spectra. The geometry of Xe₃OF₃⁺ was confirmed by quantum-chemical calculations (Figure 24 (b)) and showed that the distances observed in the disordered structures are consistent with the energy-minimized structure $(F_1 - Xe_1, 1.958 \text{ Å}; Xe_1 - O_1, 2.151 \text{ Å}; O_1 - Xe_2, 1.952 \text{ Å};$ Xe₂---F₂, 2.378 Å; F₂-Xe₃, 2.111 Å; Xe₃-F₃, 1.925 Å;

Figure 24 (a) The disordered structural unit in the X-ray crystal structure of $[Xe_3OF_3][SbF_6]$. Thermal ellipsoids are given at the 50% probability level. (b) One of the two orientations obtained from the experimental crystal structure (upper structure) and the calculated geometry (MP2/aug-cc-pVTZ (–PP)) (lower structure) for the Xe_3OF_3⁺ cation. Reproduced with permission from Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. *J. Am. Chem. Soc.* **2009**, *131*, 13474–13489.

 $F_1-Xe_1-O_1$, 176.5°; $F_2-Xe_3-F_3$, 179.9° at the MP2 level). The vibrational assignments for Xe₃OF₃⁺ were made with the aid of quantum-chemical calculations showing good overall agreement with experiment.¹⁵⁴ The majority of the vibrational modes assigned to Xe₃OF₃⁺ are strongly coupled but the predominant components of the calculated mode descriptions remained the same at all levels of theory that were examined.

The crystal structure of [H₃O][AsF₆]·2XeF₂ was determined and contained XeF₂ molecules that interact with the H₃O⁺ cations (Figure 25). The vibrational assignments for [H₃O] [AsF₆]·2XeF₂ were made with the aid of quantum-chemical calculations and were confirmed by ²H- and ¹⁸O-enrichment studies. Although not disordered, the high symmetry imposed by the crystal structure gave two equivalent fluorine atoms with Xe-F bond lengths (1.984(3)Å) comparable to that of free XeF₂ (1.999(4)Å).⁹³ This prevented the observation of an asymmetric XeF₂ molecule as indicated by the presence of two bands at 470 and 552 cm⁻¹ in the Raman spectrum, which are indicative of a terminally coordinated XeF₂ ligand (see Section 1.25.3.2.3). The X-ray crystal structure refinement and vibrational assignments for [H₃O][AsF₆]·2XeF₂ were also supported by the calculated structures and frequencies of the $H_3O^+ \cdot nXeF_2$ (n = 1-4) adducts.¹⁵⁴

Energy-minimized geometries and calculated vibrational frequencies for HOF and H_2OF^+ ¹⁵⁴ further disproved the original report of the H_2OF^+ cation. ¹⁵³ Quantum-chemical calculations also indicated that both FXeOH and FXeOH₂⁺ are viable intermediates in the proposed equilibria between XeF⁺ and H_2O that lead to the Xe₃OF₃⁺ cation (Scheme 6). ¹⁵⁴

1.25.3.2 Neutral Xenon(II) Species

1.25.3.2.1 Xenon(II)—carbon bonded species

Although the first xenon(II)–carbon bonded species, $Xe(C_6F_5)^+$, was synthesized in 1989 (see Section 1.25.3.1.1), ^{62,63} and several species containing Xe–C bonds and a second covalent Xe–E (E=O, Cl) bond were subsequently synthesized

Figure 25 The packing diagram for $[H_3O][AsF_6] \cdot 2XeF_2$ viewed along the *c*-axis showing four $0 \cdots$ F contacts. Thermal ellipsoids are drawn at the 50% probability level. Reproduced with permission from Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. *J. Am. Chem. Soc.* **2009**, *131*, 13474–13489.

 $(C_6F_5XeCl, ^{147} [(C_6F_5Xe)_2Cl] [AsF_6], ^{147} and C_6F_5XeOCOC_6F_5 ^{155})$, it was not until 2000 that the first derivatives containing a C-Xe-C linkage were reported.

1.25.3.2.1.1 $Xe(C_6F_5)_2, C_6F_5XeF$, and C_6F_5XeCN

Both Xe(C₆F₅)₂^{156,157} and C₆F₅XeCN¹⁵⁶ share the same precursor, C₆F₅XeF. In the case of the cyano derivative, the [C₆F₅Xe][Y] salts (Y=AsF₆, BF₄) were reacted with [N(CH₃)₄] [F] in CH₂Cl₂ (eqn [37]).¹⁵⁶ The reaction of C₆F₅XeF with (CH₃)₃SiCN produced C₆F₅XeCN (eqn [38]), but C₆F₅XeF did not react with (CH₃)₃SiC₆F₅ to form Xe(C₆F₅)₂.

[FXeOXeFXeF][PnF₆]

Scheme 6 Products resulting from the equilibrium between XeF⁺/H₂O and XeF₂/H₃O⁺. Reproduced with permission from Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. *J. Am. Chem. Soc.* **2009**, *131*, 13474–13489.

Scheme 7 The synthesis and reactions of C₆F₅XeF. Reproduced with permission from Maggiarosa, N.; Naumann, D.; Tyrra, W. *Angew. Chem., Int. Ed.* **2000**, *39*, 4588–4591.

$$\begin{bmatrix} C_6 F_5 X e] [Y] + [N(CH_3)_4] [F] \xrightarrow[-78 \circ C, slow]{} \\ C_6 F_5 X e F + [N(CH_3)_4] [Y] \downarrow \end{bmatrix}$$

$$[37]$$

$$C_{6}F_{5}XeF + (CH_{3})_{3}SiCN \xrightarrow{CH_{2}Cl_{2}}_{-78 \text{ °C, slow}}$$

$$C_{6}F_{5}XeCN + (CH_{3})_{3}SiF$$

$$(38)$$

The difference in reactivities was attributed to differences in Lewis acidities rather than to steric effects. Instead, the reaction of $Cd(C_6F_5)_2$ with C_6F_5XeF was used to synthesize $Xe(C_6F_5)_2$ (eqn [39]). The reaction of $Cd(C_6F_5)_2$ with XeF_2 did not introduce the C_6F_5 group because its nucleophilicity is insufficient to displace the more strongly bound fluorine ligand of XeF₂.

$$2C_6F_5XeF + Cd(C_6F_5)_2 \xrightarrow[-78\,°C, fast]{CH_2Cl_2} 2Xe(C_6F_5)_2 + CdF_2$$
 [39]

The reaction of $(CH_3)_3SiC_6F_5$ with XeF₂ proved successful in a variety of solvents when C_6F_5 -group transfer was activated by the introduction of $[N(CH_3)_4][F]$ (Scheme 7).¹⁵⁷ The basicity of the F ligand of XeF₂ is presumably sufficient to allow displacement of F⁻ from XeF₂ by the C_6F_5 group to generate C_6F_5XeF *in situ* enroute to Xe(C_6F_5)₂ formation.

It was subsequently determined that $(CH_3)_3SiC_6F_5$ was consumed without conversion to C_6F_5XeF at $[N(CH_3)_4]$ [F] concentrations less than 0.03 M, producing only $(CH_3)_3SiF$ and C_6HF_5 , whereas $[N(CH_3)_4]$ [F] concentrations greater than 0.05 M enabled the reaction to proceed to $Xe(C_6F_5)_2$.¹⁵⁸ Further studies showed that $Xe(C_6F_5)_2$ was synthesized using the stronger Lewis acid, $C_6F_5SiF_3$ (eqn [40]). However, the use of an even more acidic center, $C_6F_5BF_2$, resulted in fluoride ion abstraction (eqn [41]).

$$C_{6}F_{5}XeF + C_{6}F_{5}SiF_{3} \xrightarrow[-78 \circ C, fast]{CH_{2}Cl_{2}} Xe(C_{6}F_{5})_{2} + SiF_{4}$$
[40]

$$C_{6}F_{5}XeF + C_{6}F_{5}BF_{2} \xrightarrow[-78 \circ C, fast]{C4c_{6}F_{5}} [C_{6}F_{5}BF_{3}]$$
 [41]

The compounds Xe(C₆F₅)₂, C₆F₅XeCN, and C₆F₅XeF are unstable at room temperature. Methylene chloride solutions of each compound decomposed within several weeks at -78 °C.¹⁵⁶ It has been proposed that the decomposition products arise from homolytic cleavage of the Xe–C and Xe–F bonds followed by radical recombinations and radical attack on the solvent. Acetonitrile solutions of Xe(C₆F₅)₂ are unstable at -40 °C, and solutions in CH₃CH₂CN, CH₂Cl₂, [D₆]acetone, or in a CH₃CH₂CN/CH₃CN mixture decompose above -45 °C to produce (C₆F₅)₂, C₆F₅H, and C₆F₅D.¹⁵⁷ The solubility of Xe(C₆F₅)₂ was significantly higher in CH₃CN and CD₃CN than in CH₃CH₂CN, CH₂Cl₂, or acetone.

The series, Xe(C₆F₅)₂, C₆F₅XeCN, and C₆F₅XeF, was characterized by ¹⁹F, ¹²⁹Xe, ¹³C, and ¹⁵N NMR spectroscopy in CD₂Cl₂¹⁵⁶ and Xe(C₆F₅)₂ was also characterized by ¹²⁹Xe NMR spectroscopy in [D₆]acetone.¹⁵⁷ The ¹²⁹Xe chemical shift and the ³*J*(¹²⁹Xe⁻¹⁹F), ⁴*J*(¹²⁹Xe⁻¹⁹F), and ⁵*J*(¹²⁹Xe⁻¹⁹F) couplings of Xe(C₆F₅)₂ in [D₆]acetone were –4198 ppm and 45.1, 34.7, and 9.5 Hz, respectively.¹⁵⁷ Similar results were obtained in CH₂Cl₂ solvent where the ¹²⁹Xe chemical shift was –4152 ppm and ³*J*(¹²⁹Xe⁻¹⁹F) was 43 Hz.¹⁵⁶ These are among the most shielded ¹²⁹Xe chemical shifts presently known. The ¹²⁹Xe NMR chemical shift of C₆F₅XeCN was less shielded (–3883.2 ppm and ³*J*(¹²⁹Xe⁻¹⁹F) = 86 Hz).¹⁵⁶ It was also noted that the *p*-fluorine shifted to significantly higher frequency with increasing covalency of the Xe–C bond.¹⁵⁷

The reactivity of Xe(C₆F₅)₂ with Hg metal in CH₃CN between -40 °C and room temperature gave Hg(C₆F₅)₂, (C₆F₅)₂, and traces of C₆F₅H.¹⁵⁷ Solvolysis of Xe(C₆F₅)₂ in aHF resulted in the quantitative removal of an aryl group to produce [C₆F₅Xe][F(HF)_n] and C₆F₅H, and reaction of Xe(C₆F₅)₂ with I₂ in CH₂Cl₂ resulted in C₆F₅I and Xe.¹⁵⁶ When C₆F₅XeCN reacted with I₂ or HF, the products, C₆F₅I, C₆F₅H, and C₆F₅CN, were obtained in a 5:3:1 molar ratio, respectively, or C₆F₅Xe⁺, C₆F₅H, and C₆F₅CN were obtained in a 4:1:3 molar ratio, respectively.

Although Xe(C_6F_5)₂ decomposes explosively above -20 °C and single crystals could not be obtained, the structure was determined at -223 °C by powder diffraction using the Rietveld method (Figure 26).¹⁵⁹ The Xe–C bond lengths

(2.394(9) and 2.35(1)Å) are 0.3Å longer than in the $[C_6F_5Xe]^+$ cation.⁶⁷ The aryl rings are twisted with respect to each other with a dihedral angle of 72.5° between the planes of the rings. The dihedral angle is comparable to that of the isoelectronic $I(C_6F_5)_2^-$ ion¹⁶⁰ (69.54°). The C_6F_5 rings stack with interplanar distances of 3.57 and 3.73Å, which are comparable to those of graphite (3.40Å)¹⁶¹ and are indicative of weak π -stacking interactions.¹⁵⁹

1.25.3.2.1.2 C-Xe-C bonded molecules

As noted in Section 1.25.3.2.1.1, molecules having the general formula RXeF possess more polar Xe–F bonds than XeF₂, making them versatile starting materials for substitution reactions. Substitutions with CdR₂ (R=C₆F₅, 2,4,6-C₆H₂F₃, 4-C₅F₄N), C₆F₅Si(CH₃)₃/F⁻, and C₆F₅SiF₃ formed symmetric and/or asymmetric diarylxenon compounds where the primary driving force was the lattice energy of CdF₂ (eqn [42]).¹⁵⁸ More specifically, when C₆F₅XeF reacted with Cd(2,4,6-C₆H₂F₃)₂, the main product was 2,4,6-C₆H₂F₃)₂ also formed as minor products.

$$2C_{6}F_{5}XeF + Cd(2, 4, 6-C_{6}H_{2}F_{3})_{2} \xrightarrow{CH_{2}Cl_{2}} 2(2, 4, 6-C_{6}H_{2}F_{3}XeC_{6}F_{5}) + CdF_{2}\downarrow +$$
minor products [Xe(C₆F₅)₂ + Xe(2, 4, 6-C_{6}H_{2}F_{3})_{2}] [42]

This type of dismutation was previously unknown in xenoncarbon chemistry. Further experiments showed that C_6F_5XeF and CdF_2 do not interact and do not form $Xe(C_6F_5)_2$. In addition, 2,4,6- $C_6H_2F_3XeC_6F_5$ did not form C_6F_5XeF or 2,4,6- $C_6H_2F_3XeF$ when reacted with [N(CH₃)₄]F. Accordingly, it was concluded that the permanent dipole moment of 2,4,6- $C_6H_2F_3XeC_6F_5$ leads to an intermolecular interaction with the fluorine atom bonded to xenon in C_6F_5XeF (Scheme 8). The compounds were characterized by ¹H, ¹³C, ¹⁹F, and ¹²⁹Xe NMR spectroscopy and by quantum-chemical calculations. The ¹²⁹Xe environment of 2,4,6- $C_6H_2F_3XeC_6F_5$ (-4176 ppm) and $Xe(2,4,6-C_6H_2F_3)_2$ (-4209 ppm) was slightly more shielded than $Xe(C_6F_5)_2$ (-4152 ppm). In addition, the relative charge on the polyfluoroaryl group could be assessed by the ¹⁹F NMR chemical shift of the *p*-F resonance.

Figure 26 The structure of $Xe(C_6F_5)_2$ obtained by powder diffraction using the Rietveld method. Reproduced with permission from Bock, H.; Hinz-Hubner, D.; Ruschewitz, V.; Naumann, D. *Angew. Chem. Int. Ed.* **2002**, *41*, 448–450.

Scheme 8 Proposed rearrangement to form $Xe(2,4,6-C_6H_2F_3)_2$. Reproduced with permission from Frohn, H. J.; Theissen, M. *J. Fluorine Chem.* **2004**. *125*, 981–988.

Initial attempts to synthesize a $4\text{-}C_5F_4N$ derivative of xenon explored the reactions of XeF₂ with $(4\text{-}C_5F_4N)BF_2$ and with $(4\text{-}C_5F_4N)Si(CH_3)_3$ basified with $[N(CH_3)_4]F.^{81}$ In the case of $(4\text{-}C_5F_4N)BF_2$, an XeF₂ adduct was formed and the absence of a $4\text{-}C_5F_4N$ derivative of Xe(II) was attributed to the high acidity of $(4\text{-}C_5F_4N)BF_2$ and lower C-nucleophilicity of the $4\text{-}C_5F_4N$ group relative to the fluorinated aryl groups. In the case of $(4\text{-}C_5F_4N)Si(CH_3)_3$, only $(4\text{-}C_5F_4N)_2$, with traces of $(4\text{-}C_5F_4N)H$, was formed.

A synthetic approach, analogous to eqn [42], was employed that yielded the desired compound, $C_6F_5Xe(4-C_5F_4N)$.⁸¹ The decomposition products, C_6F_5H , $(4-C_5F_4N)H$, $C_6F_5(4-C_5F_4N)$, $(C_6F_5)_2$, and $(4-C_5F_4N)_2$, were analogous to those of other bis-aryl xenon compounds (*vide supra*). The $C_6F_5Xe(4-C_5F_4N)$ compound was characterized by ¹⁹F and ¹²⁹Xe NMR spectros-copy in CH₂Cl₂ solvent at -80 °C and displayed all the expected features and trends associated with C_6F_5Xe derivatives. Solvolysis of $C_6F_5Xe(4-C_5F_4N)$ for 1 h in aHF at -78 °C gave $(4-C_5F_4N)H$ and $[C_6F_5Xe][F(HF)_n]$, consistent with the greater anionic character of the $4-C_5F_4N$ group.

Many of the difficulties associated with the syntheses of C-Xe-C bonded compounds stem from the syntheses of the R-Xe-F precursors. The [2,6-F₂C₆H₃Xe][BF₄] salt was quantitatively converted to 2,6-F2C6H3XeF when reacted with [N $(CH_3)_4$ [F] in CH₂Cl₂ at -78 °C.¹⁶² The reaction is driven by the low solubility of [N(CH₃)₄][BF₄] in CH₂Cl₂. The product decomposed to 1,2,3-trifluorobenzene and xenon over 30 min at ambient temperature but was marginally stable in CH₂Cl₂ with an estimated half-life of 1 h. Reaction of 2,6-F2C6H3XeF and $(CH_3)_3SiAr$ $(Ar=C_6F_5, 2, 6-F_2C_6H_3)$ in the presence of catalytic amounts of [N(CH₃)₄][F] gave the corresponding diarylxenon compounds Xe(2,6-F₂C₆H₃)₂ and 2,6-F₂C₆H₃XeC₆F₅, respectively. However, both preparations contained significant amounts of the starting materials. The reaction of 2,6-F₂C₆H₃XeF and (CH₃)₃SiC₆F₅ in the absence of [N(CH₃)₄][F] showed no evidence for 2,6-F2C6H3XeC6F5 formation in the ¹⁹F NMR spectrum, but a pure product was obtained by the reaction of 2,6-F₂C₆H₃XeF with C₆F₅SiF₃ in CH₂Cl₂. The ¹³C, ¹⁹F, and ¹²⁹Xe chemical shifts were similar to other diaryl xenon compounds.^{157–159} There was a large difference in the magnitudes of the ${}^{1}J({}^{129}Xe-{}^{13}C)$ coupling constants, with a coupling of 105 Hz for the 2,6-F₂C₆H group and a coupling of 530 Hz for the C_6F_5 group.¹⁶²

The reactivity of 2,6-F₂C₆H₃XeF with elemental mercury was also examined and shown to form Hg(2,6-F₂C₆H₃)F. Reaction with (CH₃)₃SiX (X=Cl, Br, CN, NCO, OCOCF₃, OSO₂CF₃) in CH₂Cl₂ resulted in the corresponding substitution products, 2,6-F₂C₆H₃XeX and (CH₃)₃SiF.¹⁶² The analogous reaction of 2,6-F₂C₆H₃XeF with (CH₃)₃SiI gave only 1-I-2,6-F₂C₆H₃, (CH₃)₃SiF, and xenon gas.¹⁶²

The synthesis of 2,6- $F_2C_6H_3XeBr$ is of particular interest because it represents the first Xe–Br bonded compound to be isolated in macroscopic amounts. An early Mössbauer study reported the formation of ¹²⁹XeBr₂ from β -decay of ¹²⁹IBr⁻.¹⁶³

Attempts to synthesize the alkenyl and alkyl derivatives by reacting CF₂=CFSiMe₃/F⁻, CF₃SiMe₃/F⁻, and Cd(CF₃)₂, with C₆F₅XeF resulted in the consumption of the perfluoroalkenyl or alkyl transfer reagents without the observation of C₆F₅XeCF=CF₂ or C₆F₅XeCF₃.¹⁵⁸ Formation of the dismutation product, Xe(C₆F₅)₂, and, in the latter case, the coupling product, C₆F₅CF₃, suggested that C₆F₅XeCF=CF₂ and C₆F₅XeCF₃ were intermediates.

1.25.3.2.1.3 p-C₆F₅XeO(0)CC₆F₄C(0)OXeC₆F₅

Bis(pentafluorophenylxenonium) tetrafluoroterephthalate was obtained by metathesis reactions of pentafluorophenylxenonium and tetrafluoroterephthalate salts.¹⁶⁴ When CH_3CN was used as a solvent, two molecules of CH_3CN co-crystallized (eqn [43]).

$$2[C_{6}F_{5}Xe][BF_{4}] + [N(n-Bu_{4}]_{2}[p-(O_{2}C)_{2}C_{6}F_{4}] \xrightarrow{CH_{3}CN}_{-40 \circ C} \\ p-C_{6}F_{5}XeO(O)CC_{6}F_{4}C(O)OXeC_{6}F_{5} \cdot 2CH_{3}CN \downarrow$$

$$+ 2[N(n-Bu)_{4}][BF_{4}]$$
(43)

Acetonitrile could not be removed under vacuum at 20 °C without product decomposition, but was removed by repeated washings with CH_2Cl_2 at -78 °C. Pure *p*- $C_6F_5XeO(O)CC_6F_4C$ (O)OXeC₆F₅ was also isolated free of solvent using CH_2Cl_2 (eqn [44]) or by reaction of [C₆F₅Xe][BF₄] and $Cs_2[p-(O_2C)_2C_6F_4]$ in CF₃CH₂OH at -40 °C (eqn [45]). The latter synthesis was less favorable because the mechanical separation of Cs[BF₄] proved to be difficult.

$$2[C_{6}F_{5}Xe][B(CF_{3})_{4}] + [N(n-Bu_{4}]_{2}[p-(O_{2}C)_{2}C_{6}F_{4}] \xrightarrow{CH_{2}Cl_{2}}{-78 \circ C}$$

$$p-C_{6}F_{5}XeO(O)CC_{6}F_{4}C(O)OXeC_{6}F_{5}\downarrow + 2[N(n-Bu)_{4}][B(CF_{3})_{4}]$$
[44]

$$2[C_{6}F_{5}Xe][BF_{4}] + Cs_{2}[p - (O_{2}C)_{2}C_{6}F_{4}] \xrightarrow{CF_{3}CH_{2}OH} -40 \text{ °C}$$
[45]

$$p-C_6F_5XeO(O)CC_6F_4C(O)OXeC_6F_5+2Cs[BF_4]\downarrow$$

Both *p*-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅ · 2CH₃CN and unsolvated *p*-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅ are unstable, but the CH₃CN solvate is the less stable of the two compounds.¹⁶⁴ Although stable for 30 min at 20 °C, the solvate is completely decomposed to xenon and *p*-(C₆F₅O(O)C)₂C₆F₄ after 2 weeks at 20 °C. The onset of decomposition for both compounds was determined by differential scanning calorimetry (DSC) measurements and was found to occur at temperatures of 89 and 118 °C for the CH₃CN solvate and the unsolvated compound, respectively.

Only two types of solvents proved to be suitable for p-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅, nitriles such as CH₃CN, where there was poor solubility, and acidic alcohols such as CF₃CH₂OH (mp -44 °C) and (CF₃)₂CHOH (mp -4 °C), which gave satisfactory solubilities.¹⁶⁴ However, the thermal stability of *p*-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅ in both alcohol solutions was lower than in the CH₃CN solution.

A $(CF_3)_2$ CHOH/CH₃CN mixture (1:1, v/v) was used to obtain the ¹³C and ¹²⁹Xe NMR spectra, but the ¹²⁹Xe NMR

spectra were also recorded in CH₃CN and (CF₃)₂CHOH. The *m*- and *p*-F resonances of the C₆F₅Xe moieties of *p*-C₆F₅XeO(O) CC₆F₄C(O)OXeC₆F₅ are indicative of a strong arylxenonium tetrafluoroterephthalate interaction which is further supported by large ³*J*(¹⁹F⁻¹²⁹Xe) couplings of 81 Hz, which are 11 Hz greater than in [C₆F₅Xe][BF₄] and have a magnitude that is similar to that of C₆F₅XeF (82 Hz). The ¹²⁹Xe NMR resonance of *p*-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅ is more shielded (-3857 ppm) than that of [C₆F₅Xe][BF₄]⁶⁷ (-3825 ppm). All ¹⁹F NMR resonances of *p*-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅ in CH₃CN solution at -40 °C are more shielded relative to those in (CF₃)₂CHOH solutions because hydrogen bonding in (CF₃)₂CHOH lowers the nucleophilicity of the carboxylate groups.

The most intense band in the solid-state Raman spectrum of p-C₆F₅XeO(O)CC₆F₄C(O)OXeC₆F₅ occurs at 180 cm⁻¹ and is assigned to the Xe–C stretching mode. This band is at lower frequency relative to that of [C₆F₅Xe][BF₄] (205 cm⁻¹)⁶⁷ but is essentially unaffected in the CH₃CN solvate (181 cm⁻¹).¹⁶⁴

The crystal structure has been determined for p-C₆F₅XeO $(O)CC_6F_4C(O)OXeC_6F_5$ which crystallized from а (CF₃)₂CHOH/CH₃CN solvent mixture (Figure 27).¹⁶⁴ Each $p-C_6F_5XeO(O)CC_6F_4C(O)OXeC_6F_5$ molecule is solvated through hydrogen bridges with four alcohol molecules and the four oxygen atoms of the $C_6F_4(C(O)O)_2$ group. The Xe-C (2.101(4), 2.105(5)Å), and Xe-O (2.495(3), 2.511(4) Å) bond lengths are indicative of significant covalent character and the Xe-C bond lengths are comparable to those of $C_6F_5XeO(O)CC_6F_5$ (2.122(4)Å) and the $C_6F_5Xe^+$ cation in $[C_6F_5Xe][AsF_6]$ (2.081(6)Å, average).¹⁶⁵ The Xe atoms are anchored by additional short contacts to a second oxygen atom (3.156(5), 3.120(5)Å) where the longer Xe-O bond is likely a result of hydrogen bonding of four (CF₃)₂CHOH molecules with each oxygen atom of $C_6F_4(C(O)O)_2$, thereby lowering their nucleophilicities. The average dihedral angle

between the carboxylate groups is 15° and those between the aromatic rings are 42° and 58° .

1.25.3.2.1.4 Alkynyl xenon(II) fluorides

The reactions of trimethyl(alkynyl)silanes $(CH_3)_3SiC\equiv CR$ $(R=CH_3, n-C_4H_9, C_6H_5)$ with XeF₂ and $[N(CH_3)_4][F]$ in CH_2Cl_2 or in a CH_2Cl_2/CH_3CH_2CN mixture were investigated between -78 and -30 °C by multi-NMR spectroscopy (eqn [46]).¹⁶⁶

$$(CH_3)_3SiC \equiv CR + XeF_2 \xrightarrow{F^-, CH_2Cl_2 \text{ or } CH_2Cl_2/CH_3CH_2CN} -78 \circ C} RC \equiv CXeF + (CH_3)_3SiF}$$

$$(46)$$

The reaction of the ethynyl silane with XeF₂ in CH₂Cl₂ at -78 °C led to products that could not be identified, and neither an alkynylxenon(II) fluoride nor XeF₂ was detected. Propynylxenon(II) fluoride, CH₃C=CXeF, was detected in the ¹⁹F spectrum with a chemical shift of -24.9 ppm and ¹*J*(¹⁹F-¹²⁹Xe) coupling of 4241 Hz. Poor yields prevented further characterization. Better yields were obtained for *n*-C₄H₉C=CXeF and the ¹⁹F and ¹²⁹Xe chemical shifts and ¹J(¹⁹F-¹²⁹Xe) coupling constants were observed (-24.0 and -3765 ppm, and 4231 Hz, respectively). The most stable of the neutral compounds, C6H5C=CXeF, displayed similar NMR parameters in CH₂Cl₂ (¹⁹F, -23.1 ppm; ¹²⁹Xe, -3709 ppm; $^{1}J(^{19}\text{F}-^{129}\text{Xe})$, 4301 Hz) and in a CH₂Cl₂/CH₃CH₂CN mixture $({}^{19}F, -21.9 \text{ ppm}; {}^{129}Xe, -3707 \text{ ppm}; {}^{1}J({}^{19}F-{}^{129}Xe), 4331 \text{ Hz})$ at -78 °C. The compound, C₆H₅C \equiv CXeF, was the most stable among the series of alkynyl xenon(II) fluorides and could be stored in solution at -78 °C for several weeks, with the onset of decomposition occurring at -60 °C. A concentrated solution of C₆H₅C=CXeF was investigated by 1D ¹²⁹Xe, ¹⁹F, and ¹³C NMR spectroscopy, and by ¹⁹F-¹³C HMBC NMR correlation

Figure 27 The X-ray crystal structure of *p*-C₆F₅XeO(0)CC₆F₄C(0)OXeC₆F₅·4(CF₃)₂CHOH. Reproduced with permission from Bilir, V.; Bälser, D.; Boese, R.; Frohn, H.-J. *J. Fluorine Chem.* 2009, *130*, 824–829.

spectroscopy which supported the covalent nature of the threecenter-four-electron C–Xe–F moiety.

1.25.3.2.2 FXeONO₂ and XeF₂ · HNO₃

Three studies dealing with the formation of xenon(II) nitrates have been published. Two early studies have investigated the reaction of HNO₃ with XeF₂. The reactions between XeF₂ and anhydrous HNO₃ containing 20% NO₂ by weight at 20 °C resulted in red-brown solids that rapidly decomposed at 23 °C, forming an intense, transient blue color (the physical state was not specified in the original reference)¹⁶⁷ that likely resulted from N₂O₃.¹⁶⁸ The two colored species were formulated as FXeONO₂ and Xe(ONO₂)₂, but no structural characterizations were provided. The red-brown solids were not observed when the analogous reactions were carried out at -20 °C.¹⁶⁷ A subsequent study reported the in situ formation of FXeONO₂ by reaction of XeF₂ and HNO₃ in CH₂Cl₂ at -30 °C. It was shown that these solutions reacted with cyclohexene and 1-hexene to give 1,2-disubstituted fluoro-nitrato alkanes $(1 = F, 2 = ONO_2)$.¹⁶⁹ It was proposed that FXeONO₂ was the fluoronitration agent, although it was neither characterized in solution nor isolated.¹⁶⁹

Subsequent attempts to synthesize FXeONO₂ and Xe(ONO₂)₂ by reaction of XeF₂ with HNO₃ and HF elimination in SO₂ClF solution below -30 °C led to XeF₂·HNO₃.¹⁶⁸ The crystal structure of XeF₂·HNO₃ (Figure 28) revealed a hydrogen bond between HNO₃ and a fluorine atom of XeF₂ (1.86(2)Å), as well as an interaction between the oxygen atom of HNO₃ and the xenon atom of XeF₂ (3.317(1)Å), leading to

Figure 28 The structural unit in the X-ray crystal structure of $XeF_2 \cdot HNO_3$ showing the $H \cdot \cdot F$ and $Xe \cdot \cdot O$ contacts. Thermal ellipsoids are shown at the 70% probability level. Reproduced with permission from Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2010**, *132*, 13823–13839.

NMR parameters of FXeONO₂ and related species

a crystal lattice comprised of layered sheets. ¹⁶⁸ The Xe-F bond
length distortions (terminal (Ft), 1.9737(8)Å; bridge (Fb),
2.0506(8)Å) are similar to those found in compounds where
XeF ₂ is coordinated to a metal ion through a single fluorine
bridge (see Section 1.25.3.2.3). The geometrical parameters of
HNO ₃ (N–O _H , 1.368(2)Å; N–O _S , 1.216(2)Å; N–O _A , 1.206
(2)Å; $O_S - N - O_{A'}$ 128.2(1)°, where S denotes syn and A
denotes anti with respect to the O-HF linkage) are of higher
precision than those obtained from the structure of anhydrous
HNO3. ¹⁷⁰ The Raman spectrum also displayed intense bands
to lower frequency (458, 468 cm ⁻¹) and to higher frequency
(529 cm ⁻¹) of free XeF ₂ , similar to other terminally coordi-
nated XeF ₂ compounds (see Section 1.25.3.2.3). The remain-
ing bands assigned to HNO3 modes were shifted somewhat
relative to matrix-isolated HNO3 but were otherwise in good
agreement. ¹⁶⁸

Xenon fluoride nitrate was successfully synthesized by the reaction of NO₂F with [FXeOXeFXeF][AsF₆] at -50 °C (eqn [47]) and isolated.

$$\begin{split} & [\text{Xe}_3\text{OF}_3][\text{AsF}_6] + 2\text{NO}_2\text{F} \rightarrow \text{FXeONO}_2 + 2\text{XeF}_2 \\ & + [\text{NO}_2][\text{AsF}_6] \end{split} \tag{47}$$

Characterization was carried out in SO₂ClF and CH₃CN solutions by low-temperature ¹⁴N, ¹⁹F, and ¹²⁹Xe NMR spectroscopy (Table 3) and in the solid state by low-temperature Raman spectroscopy (-160 °C) and single-crystal X-ray diffraction (-173 °C).¹⁶⁸ Isotopic enrichment using [FXe¹⁸OXeFXeF] [AsF₆] and ¹⁵NO₂F aided in the assignment of the Raman spectra of FXeONO₂ and in establishing a likely reaction pathway. Raman spectroscopy indicated that FXe¹⁶ON(¹⁶O¹⁸O) formed, along with XeF₂ and [N¹⁶O¹⁸O][AsF₆], when an excess of N¹⁶O₂F reacted with [FXe¹⁸OXeFXeF][AsF₆]. A reaction mechanism consistent with these findings was proposed that included formation of FXeOXeF as an intermediate. The crystal structure of FXeONO₂ (Figure 29) shows that there are no significant intermolecular interactions and provides geometric parameters that are in good agreement with gas-phase values determined from quantum-chemical calculations. The Xe-O (2.126(4)Å) and Xe-F (1.992(4)Å) bond lengths and O-Xe-F angle (177.6(2)°) are similar to those determined for FXeOSO₂F (2.155(8)Å, 1.940(8)Å, 177.4(3)°).⁹⁸ The N-O bond lengths of the -ONO₂ groups in XONO₂ $(X=Cl,^{171} Br^{172})$ differ in that the N–O_S bond is shorter than the $N-O_A$ bond in the halogen nitrates, whereas the opposite trend is observed for FXeONO2. Several decomposition

Solute	Solvent	Temp (°C)	Species	δ(¹⁹ F), ppm	δ(¹²⁹ Xe), ppm	δ(¹⁴ N), ppm	¹ J(¹⁹ F— ¹²⁹ Xe), Hz
FXeONO ₂	S0 ₂ CIF	-70	FXeONO ₂	-131.9	-1974		5456
-	-		XeF ₂	-177.3	-1864		5603
FXeONO ₂	S0 ₂ CIF	-50	FXeON02			-65.8 ^a	
FXeONO ₂		-40	FXeONO ₂	-135.1	-1870		5503
-	U U		XeF ₂	-179.2	-1775		5697
XeF ₂	N_2O_4	30	FXeONO ₂	-130.1	-1989		5408
_			XeF ₂	-179.4	-1841		5642
			NO ₂ F	397.8			
			Xe		-5243		

^aAttempts to acquire the ¹⁵N NMR spectrum of ¹⁵N-enriched (98 + %) FXe0N0₂ (S0₂CIF solvent, -70 °C) failed because the *T*₁-relaxation time was too long (relaxation delays as high as 180 s were used). Reproduced with permission from Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2010**, *132*, 13823–13839.

Table 3

pathways were proposed for solid FXeONO₂ to account for the decomposition products. Raman spectroscopy of solid FXeONO₂ in admixture with XeF₂ and [NO₂][AsF₆] showed that FXeONO₂ had partially decomposed to N₂O₄ and XeF₂ · N₂O₄ at -78 °C after 7 days and to N₂O₅ and XeF₂ at -50 °C after 5 h.¹⁶⁸

The attempted synthesis of [XeONO₂][AsF₆] by the reaction of FXeONO₂ with excess liquid AsF₅ between -78 and -50 °C resulted in slow formation of [NO₂][AsF₆], Xe, and O₂ with no evidence for [XeONO₂][AsF₆]. Thermodynamic calculations indicated that the pathways to [XeONO₂][AsF₆] formation and decomposition are exothermic and spontaneous under standard conditions and at -78 °C.¹⁶⁸

When XeF₂ was dissolved in liquid N₂O₄ at 35 °C, a small steady-state concentration of FXeONO₂ was observed, but the predominant product was XeF₂·N₂O₄, which crystallized at 0 to -3 °C.¹⁶⁸ The X-ray crystal structure of XeF₂·N₂O₄ (Figure 30) shows that weak interactions occur between the xenon atom of XeF₂ and the oxygen atoms of N₂O₄ (3.435(4)-4.180(4)Å). The Xe-F (1.985(3)Å), N-O (1.194 (6), 1.182(6)Å), and N-N (1.378(8)Å) bond lengths of XeF₂·N₂O₄ are within $\pm 3\sigma$ of free XeF₂ and N₂O₄. In addition,

Figure 29 The structural unit in the X-ray crystal structure of FXeONO₂. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2010**, *132*, 13823–13839.

Figure 30 The local environment of the XeF₂ molecule in the crystal structure of XeF₂ · N₂O₄, showing the weak interactions between the xenon atom and N₂O₄. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2010**, *132*, 13823–13839.

the vibrational modes of $XeF_2 \cdot N_2O_4$ are essentially the same as those of free XeF_2 and N_2O_4 and therefore $XeF_2 \cdot N_2O_4$ can be classified as a molecular addition compound.

1.25.3.2.3 XeF₂ as a ligand 1.25.3.2.3.1 Introduction

The first compound in which a noble-gas fluoride, namely XeF_{2} , was shown to coordinate to a metal cation was $[Ag(XeF_2)_2]$ $[AsF_6]$.¹⁷³ Over the past decade, numerous coordination compounds in which XeF_2 functions as a ligand towards metal cations have been isolated and the majority of their structures have been determined by single-crystal X-ray diffraction.

Salts of the type $M^n[AF_6]_n$, where *n* is the net charge of the metal cation, M is an alkaline earth metal, and A is P, As, Sb, Bi, etc., have rather low lattice energies as a consequence of the anion volume (>100 Å³).¹⁷⁴ Most of these anions are also poor Lewis bases, especially AF_6^- , where A is As, Sb, or Bi. Even the weak Lewis base solvent, aHF, can provide sufficient solvation energy to bring about the dissolution of $M^n[AF_6]_n$ salts. The high solubilities of $M^n[AF_6]_n$ salts in aHF and the isolation of compounds of the type $[M(HF)_m][AF_6]_2^{-175}$ show that the cations are extensively solvated (eqn [48]):

$$M^{n}[AF_{6}]_{n} + mHF \rightarrow M[HF]_{m}^{n+} + nAF_{6}^{-}$$
[48]

Addition of XeF₂ to such solutions introduces a Lewis (fluoro) base that is stronger than HF, leading to HF displacement and the formation of compounds of the type $[M^n(XeF_2)_p]$ [AF₆]_n (eqn [49]). Xenon difluoride, with its semi-ionic character and its relatively small formula volume (65 Å³), competes effectively with AF₆⁻ in providing Coulomb energy. This is because the charges on the F atoms of XeF₂ are close to -0.5 and the charge on Xe is approximately +1, while the charge on each F ligand of AF₆⁻ is ca.-0.167.

$$M[HF]_m^{n+} + nAF_6^- + zXeF_2 \rightarrow M[XeF_2]_p^{n+} + nAF_6^- + (z-p)XeF_2 + mHF$$
[49]

1.25.3.2.3.2 Syntheses

In order for the syntheses of $[M^n(XeF_2)_p][AF_6]_n$ to proceed, two requirements must be met (eqn [49]): (1) The Lewis acidities of the metal cations should not be strong enough to withdraw F⁻ from XeF₂, which would result in $[Xe_2F_3][AF_6]$ and/or [XeF] $[AF_6]$ salts, and (2) because XeF₂ dissolved in aHF is a relatively strong oxidizing agent, it is essential that the metal cation be resistant to further oxidation.¹⁷⁶ Should the metal cation be oxidized, it would be converted to an even stronger Lewis acid, presenting the increased possibility that it will withdraw F⁻ from XeF₂.

The number of XeF₂ molecules coordinated to the metal cation (*p*) generally increases as aHF is removed under vacuum at low temperatures. In such cases, the coordination compound is mixed and also contains an excess of XeF₂. The weight-loss versus time-of-pumping curves reveal that free XeF₂ is no longer present at p=6 in the Raman spectrum, that is, v_1 of XeF₂ at 496 cm⁻¹ is absent in the product.¹⁷⁷ Coordination compounds having high *p*-values are usually unstable under dynamic vacuum, slowly losing XeF₂ to give white solids within the range, $5 \ge p \ge 2$. In the case of Mg²⁺, the compounds [Mg(XeF₂)_{*p*}][AsF₆]₂ were detected for p=2, 4, 6.

The compound corresponding to p=6 loses XeF₂ under dynamic vacuum at room temperature, yielding [Mg(XeF₂)₄] [AsF₆]₂. This compound is also unstable, and slowly loses XeF₂ under dynamic vacuum at room temperature to give [Mg(XeF₂)₂][AsF₆]₂. The preparation of a pure compound corresponding to p=2 has only been possible when stoichiometric amounts of Mg[AsF₆]₂ and XeF₂ were allowed to react in aHF.¹⁷⁷ Occasionally, compounds having low *p*-values have been obtained by pumping under dynamic vacuum at higher temperatures. The compound, [Ca(XeF₂)_{2.5}][AsF₆]₂,¹⁷⁸ was obtained by pumping [Ca(XeF₂)₄][AsF₆]₂ to constant weight under dynamic vacuum at 60 °C.

In the case of PF₅, which does not form stable [XeF][PF₆] or [Xe₂F₃][PF₆] salts,⁹³ syntheses were carried out by direct reaction between XeF₂ and gaseous PF₅ in aHF. Because the solubility of PF₅ in aHF is low, a high pressure of PF₅ was employed, forming M[PF₆]₂ *in situ* which reacts further with XeF₂, yielding, for example, [Ba(XeF₂)₄][PF₆]₂.¹⁷⁹ Again, because BF₃ does not form stable [XeF][BF₄] or [Xe₂F₃][BF₄] salts, the compound [Cd(XeF₂)][BF₄]₂ has been synthesized using an analogous approach and by direct reaction of Cd [BF₄]₂ with XeF₂ in aHF.¹⁸⁰

A special synthetic approach is also required in the case of lanthanide complexes. When the unsolvated Ln[AsF₆]₃ salts are prepared, they lose AsF₅, yielding compounds of the type [LnF_x][AsF₆]_{3-x} (x=1, 1.5). In order to form Ln[AsF₆]₃ in solution, a 3:1 molar ratio of AsF₅:LnF₃ must be used. An excess of AsF₅ would only yield [Xe₂F₃][AsF₆] upon addition of XeF₂ to the HF solution.^{181,182}

1.25.3.2.3.3 The structures of $[M^n(XeF_2)_p][AF_6]_n$, $[Cd(XeF_2)]$ $[BF_4]_2$, and $[Ba(XeF_2)][V_2O_2F_8]$ (A = As, Sb, Bi, P, Ta, Ru, Nb, V)

In general, the coordination spheres of the metal centers in these systems consist of XeF₂ molecules only, XeF₂ molecules and AF₆⁻ anions, or AF₆⁻ anions only. The XeF₂ ligand in $[M^n(XeF_2)_p][AF_6]_n$ acts either as a bridging ligand, connecting two metal centers, or as a nonbridging ligand, interacting with only one metal center. The number of XeF₂ molecules (bridging and nonbridging) coordinated to a given metal cation ranges from one nonbridging XeF₂ molecule, as in $[Cd(XeF_2)][BF_4]_2$,¹⁸⁰ to nine XeF₂ molecules (five nonbridging and four bridging), as in the case of the Ca²⁺ cation in $[Ca_2(XeF_2)_9][AsF_6]_4$.¹⁸³ Cases where seven XeF₂ molecules are either bridging or nonbridging around one metal cation are presently unknown.

The structural types displayed by $[M^n(XeF_2)_p][AF_6]_n$ coordination compounds are diverse. The influence of the central metal cation on structural diversity is related to a number of cation properties including electron affinity, electronegativity, effective nuclear charge, effective volume, Lewis acidity, covalency of the M–F bond, and coordination number. The influence of the AF₆⁻ anion on structural diversity is also important but is less influential than the cation. Among the factors that should be considered in the case of the AF₆⁻ anion series are the fluorobasicities and the magnitudes of the negative charges on the fluorine ligands of the anions.

The following examples illustrate the general structural types that have been encountered among coordination compounds containing the XeF_2 ligand:

- Molecular structure of $[Mg(XeF_2)_4][AsF_6]_2$. The Mg^{2+} cation of $[Mg(XeF_2)_4][AsF_6]_2^{177}$ is octahedrally coordinated to six F atoms. Four F atoms originate from four XeF₂ molecules, two are cis-coordinated to one another, and two are transcoordinated. The remaining F atoms of the metal coordination sphere are from two monodentate AsF₆⁻ anions and are coordinated cis to one another (Figure 31). Each of the four XeF₂ molecules and the two AsF₆⁻ anions is crystallographically distinct. The octahedron of F atoms around the central Mg²⁺ cation is distorted. The Xe---F bridging distances range from 2.059(9) to 2.087(8)Å, while the Xe-F terminal distances range from 1.940(8) to 1.963(10) Å. The bridging As-F distances are 1.773(9) and 1.786(9)Å, while terminal As-F distances range from 1.701(12) to 1.726(10)Å. Several close intra- and intermolecular electrostatic interactions occur between the positively charged Xe atoms and the negatively charged F atoms of XeF2 and AsF_6^- . The $[Mg(XeF_2)_4][AsF_6]_2$ structural units in the unit cell only interact by means of electrostatic forces, resulting in long Xe--F contact distances ranging from 3.180 to 3.698 Å (the sum of the respective van der Waals radii is 3.63 Å).³⁴
- The dimeric structure of $[Cd_2(XeF_2)_{10}][SbF_6]_4$. The structural unit of $[Cd_2(XeF_2)_{10}][SbF_6]_4$ consists of two crystallographically distinct Cd atoms, ten Xe atoms, and four SbF_6⁻ anions.¹⁷⁶ The coordination numbers around Cd1 and Cd2 are seven and eight, respectively, with average Cd1–F and Cd2–F distances of 2.266(9) and 2.336(9) Å, respectively. The longer Cd2–F bond length is in accordance with the higher coordination number of Cd2. There is no significant difference between the Cd–F(Xe) and Cd–F(Sb) distances. This is likely because the negative charges on the F ligands of SbF₆⁻ do not differ significantly from the negative charges on the F ligands of the XeF₂ molecules. The Cd atoms are connected by means of a single bridging Xe1F₂ molecule having asymmetric Xe1–F (F6, 1.976(8); F1, 2.022(9)Å) bond lengths. While the Xe1–F6 bond

Figure 31 The molecular structure of [Mg(XeF₂)₄][AsF₆]₂. Reproduced with permission from Tramšek, M.; Benkič, P.; Žemva, B. *Inorg. Chem.* 2004, *43*, 699–703.

Figure 32 The X-ray crystal structure of dimeric [Cd₂(XeF₂)₁₀][SbF₆]_{4.} Reproduced with permission from Tavčar, G.; Tramšek, M.; Bunič, T.; Benkič, P.; Žemva, B. *J. Fluorine Chem.* 2004, *125*, 1579–1584.

length is the shortest, the Cd2-F6 distance is the longest (2.646(9)Å) (Figure 32).

- The chain structure of $[Ca(XeF_2)_5][PF_6]_2$. The coordination sphere of Ca²⁺ consists of nine F atoms contributed by the two nonbridging PF6- anions and six XeF2 molecules (Figure 33).¹⁸⁴ The $P1F_6^-$ anion is coordinated to the Ca^{2+} cation by two cis-F atoms that define an edge of the $P1F_6^-$ octahedron, while the $P2F_6^-$ anion only contributes one F ligand to the coordination sphere of Ca²⁺. The Ca-F21 distance resulting from coordination to P2F6-(2.363(7)Å) is shorter than both contact distances with the bidentate $P1F_6^-$ anion (Ca-F11, 2.570(8)Å; Ca-F12, 2.759(8)Å). There are four nonbridging XeF₂ molecules, with the Ca-F(Xe) distances ranging from 2.270(8) to 2.334(8)Å, and there are two bridging XeF_2 molecules, with longer Ca-F(Xe) distances (2.403(7) and 2.548(6) Å). Each Ca²⁺ cation is only connected to neighboring Ca²⁺ cations through two bridging Xe1F₂ molecules, forming infinite chains that run parallel to the *b*-axis of the unit cell. There are also long-range electrostatic interactions between the positively charged Xe atoms and the negatively charged F atoms of the XeF₂ molecules and the PF₆⁻ anions inside the chain as well as between adjacent chains.
- The double-chain structure of $[Nd(XeF_2)_{2.5}][AsF_6]_3$. Regular trigonal prismatic arrangements around Nd³⁺ are formed by the F atoms of six different edge-bridged AsF₆ octahedra which connect the Nd³⁺ cations to form infinite chains. ¹⁸² Each of the three rectangular faces of the trigonal prisms is occupied by a F ligand of a XeF2 molecule. Two of these XeF₂ molecules are nonbridging ligands, whereas the third XeF₂ molecule bridges two Nd³⁺ cations forming a double chain (Figure 34). The Xe–F distance in the bridging XeF₂ molecule (1.991(6)Å) is not significantly different from the Xe-F distance in free XeF₂.⁹³ The nonbridging XeF₂ molecules are strongly distorted, with the bridging Xe-F bonds elongated to 2.073(6)-2.079(6)Å and the terminal Xe-F bonds contracted to 1.918(6)-1.936(6)Å. The Nd-F(As) distances range from 2.402(5) to 2.424(5)Å, while the Nd-F(Xe) distances range from 2.300(6) to 2.435(6)Å.

Figure 33 The X-ray crystal structure of [Ca(XeF₂)₅][PF₆]₂. Reproduced with permission from Bunič, T.; Tavčar, G.; Tramšek, M.; Žemva, B. *Inorg. Chem.* **2006**, *45*, 1038–1042.

The shortest distances occur for the nonbridging XeF₂ molecules, whereas the longest distance (2.435(6) Å) occurs for the bridging XeF₂ molecule. Electrostatic forces between the positively charged Xe atoms and negatively charged F ligands of XeF₂ and/or AsF₆⁻ anions result in contacts which range from 3.260 to 3.745 Å and serve to hold neighboring chains together.

• The layered structure of $[Ca(XeF_2)_4][AsF_6]_2$. The Ca²⁺ cations in this heteroleptic structure are coordinated to eight F atoms which provide a square antiprismatic Ca²⁺ coordination sphere.¹⁷⁸ One rectangular face of the antiprism is comprised of two F ligands from two terminal AsF₆⁻ anions and two F ligands from two bridging XeF₂ molecules. The opposite rectangular face is formed by two F ligands of two bridging XeF₂ molecules and two F ligands of two nonbridging XeF₂ molecules. The Ca–F(As) distances are 2.326(1) and 2.400(1)Å and the Ca–F(Xe) distances range from 2.274(9) to 2.391(9)Å, indicating that the F ligands from

Figure 34 The X-ray structure of [Nd(XeF₂)_{2.5}][AsF₆]₃. Reproduced with permission from Tramšek, M.; Lork, E.; Mews, R.; Žemva, B. *J. Solid State Chem.* 2001, *162*, 243–249.

AsF₆⁻ and XeF₂ effectively compete for coordination to the Ca²⁺ ion. Significant elongations of the bridging As–F bonds of both nonbridging AsF₆ units (1.756(9) and 1.781(9) Å) also indicate accumulation of the negative charge on these F ligands relative to the nonbridging ones. The Ca²⁺ cations are linked through bridging XeF₂ molecules forming layers perpendicular to the *c*-axis of the unit cell (Figure 35). Neighboring layers are staggered so that the terminal AsF₆⁻ anions of one layer alternate with the terminal XeF₂ molecules of its neighboring layer, giving rise to more efficient packing. In this way, the layers are interconnected by Coulomb forces between negatively charged F ligands of AsF₆⁻ anions and positively charged Xe centers of the neighboring layer.

 $[M(XeF_2)_3][AsF_6]_2$ (M=Pb, Sr), a higher interconnected double-layer structure. The metal cations of the title compound are coordinated to nine F atoms forming irregular tricapped trigonal prisms.¹⁸⁵ Six F atoms of the coordination sphere are contributed by six bridging XeF₂ molecules (Xe1, Xe2, and Xe3), two F atoms are contributed by two bridging AsF₆ units (As1), and the remaining F atom is contributed by a nonbridging AsF_6^- anion (As2) (Figure 36). The M^{2+} cations and the Xe3F₂ bridging molecules form layers where four M²⁺ cations and four Xe3F₂ bridging molecules form interconnecting rings, each M²⁺ cation being connected to four Xe3F2 molecules. These layers are connected to each other through the bridging Xe1F₂ and Xe2F₂ molecules and through two bridging AsF_6^- anions per M²⁺ cation. The terminal AsF_6^- anions are positioned in such a way that they line up with the

centers of the rings mentioned above. It is also noteworthy that the coordination polyhedron of Pb^{2+} does not show steric activity of the lone electron pair of Pb(II) atom, consistent with the structure of PbO.¹⁸⁵

- $[Ca(XeF_2)_{2.5}][AsF_6]_2$, a three-dimensional network structure. The coordination sphere of the Ca^{2+} cation in $[Ca(XeF_2)_{2.5}]$ [AsF₆]₂ consists of nine F atoms which give a monocapped Archimedean antiprism. Five F ligands are from bridging XeF_2 molecules, one F ligand is from a nonbridging AsF_6 anion (As1), and two F ligands are from two cis-bridged AsF₆⁻ anions (As2).¹⁷⁸ Additionally, one of the bridging AsF_6^- anions has a close contact with Ca^{2+} through F22 from above one rectangular face of the square antiprism, to give a nine-coordinate Ca^{2+} cation (Figure 37). The Ca–F distances do not differ by much, whether the F atoms are donated by the XeF₂ molecules or by the AsF₆⁻ anions. The Ca-F(Xe) distances range from 2.357(6) to 2.457(6)Å, the Ca-F(As2) distances are 2.335(6) to 2.432(7)Å, and the Ca-F(As1) distance is 2.315(6)Å. The Ca-F22 distance is significantly longer (2.813(8)Å) than the other Ca-F distances. This is in accordance with the observation that removal of XeF₂ from solid [Ca(XeF₂)₄][AsF₆]₂ at 333 K results in [Ca(XeF₂)_{2.5}][AsF₆]₂. The loss of 1.5 XeF₂ molecules per [Ca(XeF₂)₄][AsF₆]₂ formula unit is compensated for by cis-bridging interactions of AsF_6^- with Ca^{2+} , while the remaining XeF₂ molecules function as bridging ligands.¹⁷⁸
- Homoleptically coordinated XeF_2 in $[Ca_2(XeF_2)_9][AsF_6]_4$ $[Pb_3(XeF_2)_{11}][PF_6]_{6'}$ and $[M(XeF_2)_6][SbF_6]_2$ (M=Cu, Zn). There are two crystallographically distinct Ca²⁺ cations in the crystal structure of [Ca₂(XeF₂)₉][AsF₆]₄ (Figure 38).¹⁸³ The Ca1 atom is in a homoleptic environment of nine XeF₂ molecules. Eight of the XeF2 molecules donate F atoms to Ca^{2+} to form the apices of an Archimedean antiprism, while the ninth F atom from Xe3F₂ caps one square face of the antiprism. The four XeF2 molecules that form the open square face of the antiprism bridge the $Ca1^{2+}$ and Ca2²⁺ cations. The coordination sphere of Ca2 is also square antiprismatic and is comprised of F atoms from four monodentate \mbox{AsF}_6^- anions and four bridging \mbox{XeF}_2 molecules. Two Ca1²⁺ cations and two Ca2²⁺ cations are bridged by four XeF₂ molecules to form 16-membered rings, which are further connected, forming puckered layers. There are several electrostatic interactions between negatively charged fluorine atoms from AsF₆⁻ units and positively charged Xe atoms from nonbridging Xe2F₂ and Xe3F2 molecules which occur between the layers stacked along the c-axis of the unit cell. Based on the different Ca²⁺ cation environments, the chemical formula can be written as a double salt $[(Ca(XeF_2)_5(XeF_2)_{4/2})]$ $[(Ca(AsF_6)_4(XeF_2)_{4/2})]$. This formulation suggests that in an aHF solution of Ca(AsF₆)₂ having a large amount of XeF_{2} , the Ca^{2+} cations are fully surrounded by XeF_{2} molecules. Because the AsF_6^- anions are bulky, the grouping of only linear XeF₂ molecules around a single Ca²⁺ cation achieves an energetically and sterically preferred arrangement.¹⁸³ The crystal structure of [Pb₃(XeF₂)₁₁] [PF₆]₆ contains two crystallographically independent Pb atoms (Figure 39).¹⁸⁶ Eight F atoms, belonging to eight bridging XeF₂ molecules, form a unique homoleptic cubic environment for the Pb1 atom. The arrangement of the Pb2

Figure 35 The X-ray crystal structure showing part of the layered [Ca(XeF₂)₄][AsF₆]₂ structure. Reproduced with permission from Benkič, P.; Tramšek, M.; Žemva, B. *Solid State Sci.* 2002, *4*, 1425–1434.

Figure 36 The X-ray crystal structure of [Pb(XeF₂)₃][AsF₆]₂, showing the highly interconnected double layers. Reproduced with permission from Tramšek, M.; Benkič, P.; Žemva, B. *Solid State Sci.* **2002**, *4*, 9–14.

coordination sphere is common to lead compounds, that is, a tricapped trigonal prism comprised of six F atoms from six bridging XeF₂ molecules and three F atoms from three nonbridging PF₆⁻ anions.¹⁸⁶ The bridging XeF₂ molecules form a 3D network. The remaining XeF₂ molecule (Xe1) does not participate in metal coordination; rather, it is fixed in the crystal lattice by weak Xe1…F interactions with PF₆⁻ anions which range from 3.35 to 3.37 Å. Uncoordinated XeF₂ (Xe-F, 1.99(1)Å) was also found in the crystal structure of [Ba(XeF₂)₅][SbF₆]₂.¹⁸⁷ The compounds, [M(XeF₂)₆][SbF₆]₂ (M=Cu, Zn), are isostructural and represent the first examples in which the M²⁺ cation is homoleptically coordinated to only terminal XeF₂ molecules (Figure 40).¹⁸⁸ The bridging and terminal Xe-F distances are very similar in both the

Figure 37 The three-dimensional network in the X-ray crystal structure of [Ca(XeF₂)_{2.5}][AsF₆]₂. Reproduced with permission from Benkič, P.; Tramšek, M.; Žemva, B. *Solid State Sci.* **2002**, *4*, 1425–1434.

copper and the zinc compounds (Cu: 2.083(3)Å and 1.934 (4)Å; Zn: 2.078(5)Å and 1.931(5)Å, respectively), whereas the SbF_6^- anions are well isolated and are not distorted.

• $[Cd(XeF_2)][BF_4]_2$: the first XeF₂ coordination compound containing the BF₄⁻ anion. The tetrahedral BF₄⁻ anion has a much smaller volume than any AF₆⁻ anion discussed previously.¹⁸⁰ Furthermore, the charge on each F ligand of BF₄⁻ is greater than on the F ligands of the AF₆⁻ anions cited above, which is mainly a consequence of the smaller number of F ligands, causing the F ligands of BF₄⁻ to be more strongly fluorobasic than the F ligands of AF₆⁻ and more competitive with the F ligands of XeF₂ when donating their valence electron pair density to a metal cation. It was further shown that in order to obtain pure [Cd(XeF₂)][BF₄]₂ in aHF at room temperature,

Figure 38 The structural units in the X-ray crystal structure of $[Ca_2(XeF_2)_9][AsF_6]_4$, showing the coordination geometries at the homoleptic Ca1 and the heteroleptic Ca2 centers. Reproduced with permission from Tramšek, M.; Benkič, P.; Žemva, B. *Angew. Chem., Int. Ed.* **2004**, *43*, 3456–3458.

Figure 39 The homoleptic Pb1 center and the Pb2 environments in the X-ray crystal structure of [Pb₃(XeF₂)₁₁][PF₆]₆. Reproduced with permission from Bunič, T.; Tramšek, M.; Goreshnik, E.; Tavčar, G.; Žemva, B. *Inorg. Chem.* **2007**, *46*, 5276–5282.

the molar ratio, $Cd(XeF_2)^{2+}$: $(BF_4^-)_2$, should be at least 1:5 or higher. When aHF is removed under vacuum, the concentrations of BF_4^- and XeF_2 gradually increase and both slowly displace HF molecules that are coordinated to Cd^{2+} . Despite the relatively high fluorobasicity of XeF_2 , it is essential that the XeF₂ concentration be sufficiently high to prevent $Cd[BF_4]_2$ formation. The coordination sphere of Cd^{2+} consists of eight F ligands, which form a square antiprismatic coordination sphere around Cd^{2+} . This is in accordance with eight-coordinate Cd^{2+} in CdF_2 , although in that instance, the fluorite structure requires cubic symmetry. The main difference between the two fluoroborate structures is that one BF_4^- anion is replaced by a XeF_2 molecule, thus

transforming a 3D structure into a layered structure (Figure 41). There are two crystallographically distinct BF₄⁻ anions; four B1F₄ anions bridge four Cd²⁺ cations and three B2F₄⁻ anions bridge only three Cd²⁺ cations. The B1F₄⁻ anions are nearly regular tetrahedra, whereas the B2F₄⁻ anions are distorted. The XeF₂ molecule is nonbridging with Xe–F_b and Xe–F_t bond lengths equal to 2.065(3)Å and 1.943(4)Å, respectively.

[Ba(XeF₂)][V₂O₂F₈]; the first XeF₂ coordination compound containing an oxofluoro anion. The reaction of BaF₂ and VOF₃ in a 1:2 molar ratio at room temperature in HF yielded [Ba(HF)][V₂O₂F₈] which was isolated at room temperature as a white powder.¹⁸⁹ Further reaction with excess

Figure 40 The structural unit in the X-ray crystal structure of the homoleptic compounds, [M(XeF₂)₆][SbF₆]₂ (M = Cu, Zn). Reproduced with permission from Tavčar, G.; Goreshnik, E.; Mazej, Z. *J. Fluorine Chem.* **2006**, *127*, 1368–1373.

Figure 41 The X-ray crystal structure of $[Cd(XeF_2)][BF_4]_2$ showing the basic building block in the layered structure. Reproduced with permission from Tavčar, G.; Žemva, B. *Inorg. Chem.* **2005**, *44*, 1525–1529.

XeF₂ resulted in HF displacement, forming [Ba(XeF₂)] [V₂O₂F₈], the first coordination compound of XeF₂ having an oxofluoro anion. Suitable crystals of [Ba(XeF₂)][V₂O₂F₈] were isolated from a saturated aHF solution at room temperature. The coordination sphere of Ba²⁺ is comprised of 12 F atoms (Figure 42). Ten F atoms are from four $V_2O_2F_8^{2-}$ anions, where two anions coordinate to the central Ba²⁺ cation through three F atoms and the other two anions coordinate through two F atoms. In addition, two fluorine atoms are from the XeF₂ molecules that lie along the *b*-axis and bridge the Ba[V₂O₂F₈] layers that are stacked along the *a*-axis (Figure 43). It is generally noted that when the Xe-F bridging distance is long (1.993(7)Å), the Ba-F distance is short (2.773(7)Å) and when the Xe-F bridging distance is short (1.974(7)Å), the Ba-F distance is long (3.076(7)Å).

Figure 42 The coordination sphere of the Ba atom in the X-ray crystal structure of $[Ba(XeF_2)][V_2O_2F_8].^{189}$

Figure 43 Coordination of XeF₂ to Ba[V₂O₂F₈] layers in [Ba(XeF₂)] [V₂O₂F₈]. ¹⁸⁹

1.25.3.2.3.4 The structural influence of the metal center

Table 4 lists all isolated metal coordination compounds in which XeF_2 serves as a ligand to a metal ion.

The influence of the metal center is demonstrated by the series of compounds, $[M(XeF_2)_4][AsF_6]_2$ (M=Mg,¹⁷⁷ Ca,¹⁷⁸ Cd¹⁹⁰). The crystal structure of the Mg compound represents the first molecular structure found in the $M^n[AF_6]_n/XeF_2/aHF$ system. This structure type is a consequence of the small Mg²⁺ ion and its low coordination number (CN = 6) as well as the covalencies of the Mg–F bonds. The Mg–F(Xe) and Mg–F(As) distances in [Mg(XeF_2)_4][AsF_6]_2 are essentially the same (average Mg–F(Xe), 1.98(1) Å; average Mg–F(As), 1.99(1)Å), indicating that the F ligands of monodentate AsF₆⁻ can, in terms of relative fluorobasicity, compete effectively with the F ligands of the XeF₂ molecules when coordinating to the Mg²⁺ ion. The charge transfer from the XeF₂ molecule to the cation that results from the covalent character of the Mg–F bond renders the XeF₂ molecules less capable of bridging two Mg²⁺ cations.

In accordance with the much higher electron affinity of Cd^{2+} (16.91 eV)¹⁹¹ compared to that of Ca^{2+} (11.87 eV),¹⁹¹ a greater

	р									
M Li+	AsF ₆ ⁻	SbF ₆ ⁻	BiF ₆ ⁻	PF_6^-	TaF ₆ ⁻	RuF_6^-	NbF_6^-	VF_6^-	BF_4^-	V ₂ O ₂ F ₈ ²⁻
Aa+	2			2		5				
Mg^{2+}	6, <i>4</i> , <i>2</i>	6, <i>2</i>	6		2					
Ca ²⁺	4.5, 4, 2.5	3.5	3	5		3				
Sr ²⁺	3		3	3, 10/3	0.5	3				
Ba ²⁺	<i>5</i> , 3	5	2	4	0.5	5	5	5		1
Pb ²⁺	3	3		<i>3, 11/3</i>						
Cd^{2+}	4	8, 5, 3, 2.5, 4/3	4.5	5	1		1		1	
Zn^{2+}		2,6								
Cu^{2+}		2, 4, 6								
Hg^{2+}	5,2	7, <i>3</i>								
La ³⁺	3, <i>2.5</i>									
Pr ³⁺	3									
Nd^{3+}	3, <i>2.5</i>	3	3							

Table 4 A list of compounds, $[M''(XeF_2)_p][AF_6]_{n^2}$ [Cd(XeF_2)][BF_4]_2 and [Ba(XeF_2)][V_2O_2F_8], in which the XeF_2 ligand coordinates to metal ions^b

 ${}^{a}n$ is the net charge on the metal cation and **p** is the number of XeF₂ ligands per Mⁿ cation.

^bThe X-ray crystal structures have been determined for the compounds where the index number, p, is in italic script.

degree of charge is transferred from the XeF₂ molecule to the Cd²⁺ ion and, therefore, a higher degree of covalency in the M–F bonds is expected for the Cd²⁺ compound relative to the Ca²⁺ compound, making bridging interactions in the Cd structure less favorable. In the structure of $[Cd(XeF_2)_4][AsF_6]_2$,¹³⁰ there are only two bridging XeF₂ molecules which result in chain formation, while in the structure of $[Ca(XeF_2)_4][AsF_6]_2$,¹⁷⁸ there are four bridging XeF₂ molecules which yield a layered structure.

By only changing the cation, three different crystal structures were obtained: molecular (Mg^{2+}), chain (Cd^{2+}), and layered (Ca^{2+}) structures in which only XeF₂ molecules coordinate to the metal centers.

1.25.3.2.3.5 The influence of the AF_6^- anion

Overall, the effect of the anion is less significant. This can be seen in the series of isostructural $[Mg(XeF_2)_2][AF_6]_2$ (A=As¹⁷⁷ and Sb¹⁹²) salts. In $[Nd(XeF_2)_{2,5}][AsF_6]_3^{182}$ and $[Nd(XeF_2)_3]$ $[SbF_6]_{3/}^{192}$ the AsF₆⁻ anion is a stronger Lewis base than SbF₆ which means that the interactions of six AsF_6^- anions with the Nd³⁺ cation are stronger than the corresponding interactions with the SbF_6^- anions (Figure 34). As a consequence, the interactions of the negatively charged F ligands of the XeF₂ molecules are stronger in the case of the SbF₆⁻ compound. This results in a shift of the negative charges on the F ligands of the XeF₂ molecules toward the metal center. Therefore, the ability of XeF₂ ligands in the SbF₆⁻ compound to act as bridging ligands is reduced. The interactions of the XeF₂ molecules with the metal center are weaker in the AsF_6^- compound, allowing one XeF₂ molecule to serve as a bridging ligand. Thus, the double-chain structure (Figure 34) was obtained. The Raman spectra are in accordance with the above interpretation and show that the M-F(Xe) bond is stronger in the case of SbF_6^- (v(Xe-F) is 576 cm⁻¹) than in the case of $AsF_6^ (v(Xe-F) \text{ is } 568 \text{ cm}^{-1}).$

Another example is the series of isostructural compounds, $[Ba(XeF_2)_5][AF_6]_2$ with A=Sb,¹⁸⁷ As,¹⁹³ Nb,¹⁹⁴ and Ru,¹⁹⁴ where the effect of the fluorobasicity of the AF_6^- anion on the structures of these compounds is insignificant.

1.25.3.2.3.6 Raman spectra

Raman spectroscopy of $[M^n(XeF_2)_p][AF_6]_n$ coordination compounds is an important and versatile tool for their characterization (Table 5). The high polarizability of xenon usually results in intense Raman-active Xe-F stretching bands for XeF₂ and its coordination compounds, whereas bands arising from A-F and M-F stretching modes are usually much less intense. The symmetric stretching mode of uncoordinated XeF₂¹³⁰ and the symmetric stretching mode of coordinated XeF₂ in compounds such as XeF₂·([XeF₅][AsF₆])₂ ¹⁹⁵ appear at or are slightly above 497 cm⁻¹. When XeF₂ is distorted, it may be regarded as being on the ionization pathway $XeF_2 \rightarrow XeF^+ + F^-$, so that the band at 497 cm⁻¹ is replaced by two bands in the Raman spectrum. The higher frequency band is associated with the short Xe-F bond (v($Xe-F_t$)) and the lower frequency one is associated with the longer Xe-F bond of the fluorine bridge ($v(Xe-F_b)$). In the extreme case where XeF₂ is completely ionized to XeF⁺, the stretching frequency for XeF⁺ should occur at 600 cm⁻¹ or higher.¹³⁹

The interaction strengths of the terminally coordinated XeF₂ molecules with the metal centers are indicated by the Xe-F_t stretching frequency, which ranges from 544 to 585 cm⁻¹ (Table 5). The XeF₂ stretching frequencies of bridging XeF₂ molecules are in the range 510–534 cm⁻¹ and are, as expected, closer to the symmetric stretching vibration of free XeF₂ (497 cm⁻¹). Shifts of the bridging XeF₂ stretching frequencies to higher values than free XeF₂ most likely result from the high Coulomb fields that these semi-ionic XeF₂ molecules experience when coordinated between two M^{*n*+} cations.

The AF_6^- octahedra are usually deformed by strong fluorine bridge interactions between the M atoms and AF_6^- anions as well as by interactions of the F atoms of the AF_6^- units with the positive Xe atoms of the XeF₂ molecules. As a consequence, the O_h symmetry of AF_6^- is lowered and, instead of three Raman-active vibrational modes, more bands appear that are assigned to AF_6^- vibrations because the doubly and triply degenerate bands are split, and bands that are formally Raman inactive under O_h symmetry are active under lower symmetries.^{71,93,105,106,126,154,196,197}

 Table 5
 Stretching modes of XeF₂ as a terminal and a bridging ligand^a

Metal ion	Anion	p ^b	$v(XeF_2)_t (cm^{-1})$	v(XeF ₂) _b (cm ⁻¹)	Ref.
Mg ²⁺	AsF ₆ ⁻	4	565(10)		177
Mg ²⁺	AsF ₆	2	578(10), 585(sh)		177
Mg^{2+}	SbF ₆ ⁻	2	572(10), 582(sh)		192
Ca ²⁺	AsF ₆	4	546(7.1)	533(10)	178
Ca ²⁺	AsF ₆	2.5		519(10), 528(sh)	178
Ca ²⁺	PF_6^{-1}	5	545(10)	522(4.0)	184
Sr ²⁺	AsF ₆	3		531(10)	185
Pb ²⁺	AsF ₆ ⁻	3		514(10)	185
Ba ²⁺	NbF ₆ ⁻	5		510(10)	194
Ba ²⁺	PF_6^{-1}	4		525(10)	179
Ba ²⁺	RuF_{6}^{-}	5		512(9.5), 525(sh)	194
Ba ²⁺	SbF ₆	5		510(10), 521(5.8)	187
Cd^{2+}	AsF ₆	4	547(10)	521(5.1)	190
Cd^{2+}	PF_6^-	5	546(10)	521(sh)	184
Cd^{2+}	SbF ₆ ⁻	5	544(10)		176
Nd ³⁺	AsF ₆	2.5	575(10), 584(8.9)	534(1.5)	182
Nd ³⁺	AsF ₆	3	568(10)		182
Nd^{3+}	SbF ₆ ⁻	3	566(9.1), 576(10)		192

^aFrequencies are from the Raman spectra and relative intensities are given in parentheses.

^b**p** is the number of XeF₂ ligands per Mⁿ cation and n is the net charge on the metal cation.

1.25.3.2.3.7 Solid-state NMR spectra

Solid-state ¹⁹F and ¹²⁹Xe magic-angle spinning (MAS) NMR spectroscopy has been applied to the structural characterization of $[Mg(XeF_2)_2][AsF_6]_2$, $[Mg(XeF_2)_4][AsF_6]_2$, $[Ca(XeF_2)_2_5]$ $[AsF_6]_{2}$, $[Ba(XeF_2)_3][AsF_6]_2$, and $[Ba(XeF_2)_5][AsF_6]_2$.¹⁹³ The spectra were recorded for compounds having known and unknown crystal structures. The study has shown that bridging and terminal ¹⁹F environments of coordinated XeF₂ can be distinguished. Fluorine-19 is the preferred nucleus for such studies because the ¹⁹F chemical shifts are primarily dependent on their bridging and terminal natures, whereas the ¹²⁹Xe chemical shift is largely dependent on nonbonded interactions in the solid state. In addition, the extremely large shielding anisotropy of ¹²⁹Xe renders ¹²⁹Xe NMR spectroscopy very insensitive, causing difficulties in measuring ${}^{1}J({}^{129}Xe-{}^{19}F)$ coupling constants. Each crystallographically distinct F atom bonded to Xe gave rise to a separate ¹⁹F resonance. Furthermore, it was shown that the AsF₆ anions of [Mg(XeF₂)₄][AsF₆]₂, [Ca(XeF₂)_{2.5}][AsF₆]₂, [Ba(XeF₂)₃] $[AsF_6]_{21}$ and $[Ba(XeF_2)_5][AsF_6]_2$ rapidly reoriented on the NMR timescale, rendering the fluorines on arsenic equivalent on the NMR timescale, thereby emulating a perfectly octahedral environment. Thus, the static picture of fixed AsF₆⁻ anions, suggested by X-ray crystallography, has to be revised.

1.25.3.2.3.8 XeF₂ coordinated to main-group centers

Xenon difluoride behaves as a strong Lewis base toward Lewis acids of varying strengths such as AsF₅, SbF₅, BiF₅, NbF₅, TaF₅, RuF₅, VF₅, AuF₅, TiF₄, MnF₄, SnF₄, PdF₄, PtF₄, and CrF₄, forming XeF⁺ and Xe₂F₃⁺ salts.^{121,122,139,198,199} Fewer cases exist where XeF₂ only functions as a ligand coordinated to the metal ion (see Section 1.25.3.2.1). In the former cases, a fluorine atom of XeF₂ is essentially transferred to the acid to form a XeF⁺ salt. In the latter cases, the interaction of the XeF₂ molecule with a metal center is manifested by extension of the Xe–F bond to the coordinated fluorine atom and by shortening of the terminal Xe–F bond. A number of molecular addition compounds of

XeF₂ are also known in which XeF₂ exhibits no tendency to coordinate. These are exemplified by IF₅·XeF₂,²⁰⁰ XeF₄·XeF₂,²⁰¹ and XeOF₄·XeF₂,^{202,203} which show that the XeF₂ vibrational frequencies and the Xe–F bond lengths are not significantly affected relative to those of XeF₂.

The α - and β -phases of XeOF₄·XeF₂ have been isolated and the crystal structure of the more stable α -phase was determined.²⁰³ Each XeF₂ molecule is symmetrically coordinated through its fluorine ligands to four Xe(VI) atoms of the XeOF₄ molecules, which, in turn, are weakly coordinated to four XeF₂ molecules. The high-temperature phase, β -XeOF₄·XeF₂, was only characterized by low-temperature Raman spectroscopy. The geometric parameters and vibrational frequencies of both phases are essentially unaltered when compared with those of pure XeF₂ and XeOF₄.

The only examples presently known in which XeF₂ coordinates to nonmetal centers are $2XeF_2\cdot[XeF_5][AsF_6]$, XeF₂·[XeF₅][AsF₆], and XeF₂·2[XeF₅][AsF₆],¹⁹⁵ where XeF₂ coordinates to the Xe(VI) atom of the XeF₅⁺ cation, and [BrOF₂][AsF₆]·XeF₂^{91,196} and [BrOF₂][AsF₆]·2XeF₂, where XeF₂ coordinates to Br(V) of the BrOF₂⁺ cation.¹⁹⁶

In the cases of the $BrOF_2^+$ adducts, the low-temperature solvolysis of [XeOTeF₅][AsF₆] in liquid BrF_5 yielded an XeF₂ adduct of $BrOF_2^+$ according to eqn [50].

$$[XeOTeF_5][AsF_6] + (n+1)BrF_5 \xrightarrow[20 \circ C]{BrOF_2}][AsF_6] \cdot XeF_2 \cdot nBrF_5 + TeF_6$$

$$[50]$$

Slow cooling of this solution resulted in crystals of $[BrOF_2]$ [AsF₆] in which the oxygen and fluorine atoms were positionally disordered. Alternatively, removal of the bulk solvent under dynamic vacuum at ca. -50 °C yielded pale yellow, polycrystalline $[BrOF_2][AsF_6] \cdot XeF_2 \cdot nBrF_5$. Continued pumping on $[BrOF_2][AsF_6] \cdot XeF_2 \cdot nBrF_5$ at -50 °C for several hours yielded $[BrOF_2][AsF_6] \cdot XeF_2$ as a white powder. Pumping at 0 °C for several more hours resulted in XeF₂ loss and the formation of $[BrOF_2][AsF_6]$. Dissolution of $[BrOF_2][AsF_6] \cdot XeF_2$ in aHF at -20 °C gave a clear, colorless solution which, when cooled to -78 °C, yielded a white precipitate consisting of a mixture of $[BrOF_2][AsF_6] \cdot 2XeF_2$ and $[BrOF_2][AsF_6]$ (eqn [51]). Slow cooling of the aforementioned solution resulted in the formation of crystal-line $[BrOF_2][AsF_6] \cdot 2XeF_2$ between -28 and -32 °C. Pure $[BrOF_2][AsF_6] \cdot 2XeF_2$ was also synthesized by the reaction of $[BrOF_2][AsF_6] \cdot XeF_2$ or $[BrOF_2][AsF_6]$ with one and two equivalents, respectively, of XeF_2 in aHF (eqns [52] and [53]).

$$2[BrOF_2][AsF_6] \cdot XeF_2 \rightarrow [BrOF_2][AsF_6] \cdot 2XeF_2 + [BrOF_2][AsF_6]$$
[51]

$$[BrOF_2][AsF_6] \cdot XeF_2 + XeF_2 \rightarrow [BrOF_2][AsF_6] \cdot 2XeF_2$$

$$[52]$$

$$[BrOF_2][AsF_6] + 2XeF_2 \rightarrow [BrOF_2][AsF_6] \cdot 2XeF_2$$
[53]

The compound $[BrOF_2][AsF_6] \cdot 2XeF_2$ is isostructural and isomorphous with its krypton analog (see Section 1.25.7.1).¹⁹⁷ The primary coordination sphere around $BrOF_2^+$ is trigonal pyramidal where the weighted average of the Br–O (1.549(5)Å) and Br–F (1.734(4), 1.736(4)Å) bond lengths (1.673(4)Å) is slightly longer than the Br–O/F bond length in the disordered $[BrOF_2][AsF_6]$ (1.647(1)Å) structure. The F ligand of the AsF₆⁻ anion is coordinated trans to the O atom, whereas the F ligands of the XeF₂ molecules are coordinated trans to the F atoms of $BrOF_2^+$ so that the bromine coordination sphere is a distorted octahedron (Figure 44).

Coordination of XeF₂ molecules to BrOF₂⁺ results in asymmetric Xe–F bond lengths, with bridging Xe–F bonds (2.052(4) and 2.053(4)Å) that are longer than the terminal Xe–F bonds (1.960(4) and 1.956(5)Å).¹⁹⁶ Such asymmetries have been observed for XeF₂ terminally coordinated to metal centers (see Section 1.25.3.2.3).^{18,177}

The most intense vibrational bands in the Raman spectra of $[BrOF_2][AsF_6]\cdot 2XeF_2$ and $[BrOF_2][AsF_6]\cdot XeF_2$ are associated with the XeF_2 ligand stretching modes. Relative to the stretching bands of coordinated $BrOF_2^+$, they are less intense than the analogous KrF_2 stretching bands in $[BrOF_2][AsF_6]\cdot 2KrF_2$.¹⁹⁷ The assignments of the XeF_2 bands are in accordance with the assignments reported for XeF_2 molecules coordinated to metal centers.^{18,177} The XeF_2 molecules of the complex were shown

Figure 44 The structural unit in the X-ray crystal structure of [BrOF₂] [AsF₆]·2XeF₂. Reproduced with permission from Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. *Inorg. Chem.* **2010**, *49*, 6673–6689.

by calculations to exhibit strong couplings of their terminal $v(Xe-F_t)$ modes, whereas the bridging $v(Xe-F_b)$ stretching modes only weakly couple to one another. The opposite behavior was observed for $[BrOF_2][AsF_6] \cdot 2KrF_2$.¹⁹⁷

An ELF (Electron Localization Function) and quantum theory of atoms in molecules (QTAIM) study revealed the localization domain associated with the valence electron lone pair of bromine decreased in size across the series $BrOF_2^+ > [BrOF_2]$ $[AsF_6]_3^{2-} > [BrOF_2][AsF_6] \cdot 2XeF_2 \approx [BrOF_2][AsF_6] \cdot 2KrF_2$,¹⁹⁷ as the Br(V) valence shell became more crowded.

Both $[BrOF_2][AsF_6]\cdot 2XeF_2$ and $[BrOF_2][AsF_6]\cdot XeF_2$ are kinetically stable for indefinite periods of time under anhydrous conditions at $-78 \,^{\circ}C.^{196}$ An attempt to synthesize a XeF₄ adduct of $[BrOF_2][AsF_6]$ failed, in accordance with the lower fluoride ion donor ability of XeF₄ relative to that of XeF₂. The analogous chlorine systems, $[ClOF_2][AsF_6]/XeF_2$ and $[ClOF_2]$ $[AsF_6]/XeF_4$, were also investigated in the hope that $ClOF_2^+$, by virtue of the greater electronegativity of Cl(V), would prove to be a stronger Lewis acid. However, these attempts were unsuccessful. Warming of a mixture of $[ClOF_2][AsF_6]$ and XeF_2 in aHF to room temperature resulted in fluoride ion abstraction from XeF₂ by $ClOF_2^+$ to form $[Xe_2F_3][AsF_6]$ and $ClOF_3$. The latter result is indicative of the greater Lewis acid strength of $ClOF_2^+$ relative to that of BrOF₂⁺.

1.25.3.2.3.9 Quantum-chemical studies of krypton and xenonfluoro species

Atomization energies at 0 K, heats of formation at 0 and 298 K, and vibrational zero-point energies were calculated for XeF⁺, XeF⁻, XeF₂, XeF₄, XeF₅⁻, and XeF₆, ²⁰⁴ for XeF₃⁺, XeF₃⁻, XeF₅⁺, XeF_7^+ , XeF_7^- , and $XeF_{8'}^{205}$ and for KrF^+ , KrF^- , KrF_2 , KrF_3^+ , KrF_{4} , KrF_{5}^{+} , and KrF_{6}^{206} at the coupled-cluster level of theory. Evidence was presented for the fluxionality of XeF_6 caused by the presence of a sterically active free valence electron pair on Xe. The $C_{3\nu}$ and O_h structures were shown to have essentially the same energy.²⁰⁴ The geometries of XeF_6 and other AF_6E molecules have been studied by means of their ELFs.²⁰⁷ The stabilities of noble-gas fluorides with respect to F2 loss were studied and it was shown that ${\rm XeF_8}$ and ${\rm XeF_7}^+$ 205 and the krypton fluorides²⁰⁶ are expected to be thermodynamically unstable, whereas XeF₃⁺, XeF₅⁺, XeF₃⁻, XeF₅⁻, and XeF₇⁻ are stable with respect to F_2 loss.²⁰⁵ The F⁺ and F⁻ affinities of Xe, XeF₂, XeF₄, and XeF₆ were also examined.²⁰⁵ An analysis of the energetics of KrF₆ and KrF₄ indicates that KrF₆ could exist only at very low temperatures and the preparation of KrF4 would be extremely difficult because the energy barriers toward fluorine atom loss are only 0.9 and 10 kcal mol⁻¹, respectively. Similar conclusions were arrived at for KrF₃⁺ and KrF₅⁺ which have calculated stabilities comparable to KrF₄.²⁰⁶

1.25.3.3 The XeF_3^- Anion

Of the binary xenon fluorides, only XeF₄ and XeF₆ form isolable anionic salts with fluoride ion donors. Xenon tetrafluoride behaves as a fluoride ion acceptor (calculated gas-phase FIA, fluoride ion affinity, 247.3 kJ mol⁻¹)²⁰⁵ toward alkali metal fluorides and the 'naked' fluoride ion source [N(CH₃)₄][F] to give salts of the pentagonal planar XeF₅⁻ anion.²⁰⁸ Xenon hexafluoride is a considerably stronger fluoride ion acceptor forming the XeF₇⁻ (FIA, 313.8 kJ mol⁻¹)²⁰⁴ and XeF₈²⁻ anions with alkali metal (Na, K, Rb, and Cs) fluorides.^{209,210} Additionally, the NO⁺ and NO₂⁺ salts have been prepared by direct reaction of XeF₆ with NOF or NO₂F, namely, [NO₂] [XeF₇],²¹¹ [NO]₂[XeF₈],^{212,213} and [NO₂][Xe₂F₁₃].²¹¹ The [NO]₂[XeF₈] salt has been characterized by single-crystal X-ray diffraction.^{212,213} Xenon hexafluoride also reacts with [NF₄][HF₂] in aHF to give [NF₄][XeF₇], which was converted to [NF₄]₂[XeF₈] by selective laser photolysis.²¹⁴ The XeF₇⁻ and Xe₂F₁₃⁻ anions have also been characterized by X-ray crystallography as their Cs⁺ and NO₂⁺ salts.²¹¹

Experimental evidence for the fluoride ion acceptor properties of XeF2 in solution or in the solid state (FIA, 83.3 kJ mol⁻¹)²⁰⁵ has not been readily forthcoming.²⁰⁵ Evidence for the XeF₃⁻ anion was obtained in the gas phase from the negative ion mass spectra of XeF_2^{215} and $XeOF_4^{216}$ and from energy-resolved collision-induced dissociation studies of XeF₂.²¹⁷ The related XeF₃· radical has been stabilized in an argon matrix and characterized by IR spectroscopy and explored by kinetic measurements (see Section 1.25.4.1.1).²¹⁸ Although radiochemical experiments using ¹⁸F (half-life=109.7 min) have failed to confirm ¹⁸F⁻ exchange with XeF₂ in water,²¹⁵ CH₂Cl₂,²²⁰ and CH₃CN,^{220 18}F⁻ exchanges between [¹⁸F]-HF, $[^{18}F]$ -SiF₄, or $[^{18}F]$ -AsF₅ and XeF₂ (through XeF⁺ and Xe₂F₃⁺ as intermediates) have been used for the synthesis of [¹⁸F]-XeF₂,²²¹ which, in turn, was used for the preparation of [¹⁸F]-2-fluoro-2-deoxy-D-glucose²²² and [¹⁸F]-6-fluoro-L-3,4dihydroxyphenylalanine.²²³

Chemical exchange between F^- and XeF₂ in CH₃CN solvent under rigorously anhydrous conditions was initially established by 2D ¹⁹F-¹⁹F exchange spectroscopy (EXSY) experiments.²²⁰ Fluorine-19 exchange occurred between [N(CH₃)₄][F] and XeF₂ in CH₃CN solvent at 15 °C, providing the first evidence for XeF₂/ F^- exchange on the NMR timescale.²²⁰ The ¹⁹F exchange was postulated to proceed through XeF₃⁻⁻ (eqn [54]).

$$XeF_2 + F^- \rightleftharpoons XeF_3^-$$
 [54]

The enthalpy of activation for this exchange, ΔH^{\ddagger} , was subsequently investigated by single-selective inversion ¹⁹F NMR spectroscopy and was determined to be 74.1±5.0 kJ mol⁻¹ (0.18 M) and 56.9±6.7 kJ mol⁻¹ (0.36 M) for equimolar amounts of [N(CH₃)₄][F] and XeF₂ in CH₃CN solvent.²²⁴

Attempts have been made to synthesize $[N(CH_3)_4][XeF_3]$ by reaction of stoichiometric amounts of XeF₂ and [N(CH₃)₄] [F] in CH₃CN (1 h at -30 °C) and CHF₃ (0 °C for 12 h under autogenous pressure) solvents; however, only Raman bands arising from unreacted starting materials were observed.²²⁴ The inability to form a XeF₃⁻ salt in either CHF₃ or CH₃CN solvents was attributed to the high solvation energies of fluoride ion in these polar solvents and to the low FIA of XeF₂. The syntheses of the Cs^+ and $N(CH_3)_4^+$ salts of XeF_3^- were also attempted in the absence of a solvent. Fusion of a fourfold molar excess of XeF₂ with CsF resulted in no reaction up to 170 °C. When a sixfold molar excess of XeF₂ with respect to $[N(CH_3)_4][F]$ was slowly heated to the melting point of XeF₂ (129 °C), rapid oxidative fluorination of the $N(CH_3)_4^+$ cation ensued, resulting in sample detonation. The inability to form XeF₃⁻ salts was supported by thermochemical calculations which indicated that XeF3⁻ salt formation (eqn [55] is disfavored (ΔG°_{rxn} ([Cs][XeF₃], s) = 114 kJ mol⁻¹ and ΔG°_{rxn} $([N(CH_3)_4][XeF_3], s) = 31 \text{ kJ mol}^{-1}).^{224}$

 $[M][F](s) + XeF_2(s) \rightarrow [M][XeF_3](s) (M = Cs^+, N(CH_3)_4^+) [55]$

Computational studies have been used to investigate XeF3⁻ in the gas phase,^{205,217} and in CH₃CN solution.²²⁴ The XeF₃ anion represents the first example of an AX₃E₃ VSEPR arrangement of three electron lone-pair and three bond-pair domains, resulting in a highly crowded xenon valence shell for this species. The effect this crowding has on the molecular geometry of XeF₃⁻ is therefore of considerable interest. DFT calculations with the B3LYP functional indicated that the XeF₃⁻ anion (C_{2v}) is the energy-minimized structure (all frequencies real) when either an all-electron Maroulis basis set or an ECP basis set (SDB-cc-pVTZ) was used for xenon.²¹⁷ The F₂Xe···F⁻ adduct (C_{2v}) was higher in energy than the XeF₃⁻ anion by 2.1–15.1 kJ mol^{-1 217} and was a transition state (one imaginary frequency). However, this work overlooked a lowerenergy, ground-state conformation of the $F_2Xe\cdots F^-$ adduct possessing a lower symmetry (C_s) , as found in a later study (4.85 kJ mol⁻¹ lower than the C_{2v} structure at the CCSD(T)/aVTZ level of theory).²⁰⁵ The existence of the XeF₃⁻ anion as a transition state was not explored.²⁰⁵

The transition state (XeF_3^{-}) was shown to be more strongly covalently bound than the ground-state F₂Xe---F⁻ adduct. Using DFT methods, the Y-shaped XeF₃⁻ anion (C_{2v} symmetry; Figure 45(a)) possesses three similar Xe–F bond lengths.²²⁴ The two large angles and one small angle allow for the retention of the torus, comprised of three electron lone pairs, around the xenon atom as shown by the ELF analysis (Figure 46). The structure was also computed at the CCSD/ aVTZ level of theory and found to possess similar geometric parameters to that of the DFT structure. The energy-minimized geometry of the ground-state $F_2Xe_{--}F^-$ anion (C_s symmetry) is a distorted Y-shaped geometry having two shorter, nearly equal Xe–F bonds and a third longer Xe–F bond (Figure 45(b)). The F^- anion is only weakly bound to XeF₂, while the XeF₃⁻ anion exists as a first-order transition state in the fluoride ionexchange mechanism.

Quantum-chemical calculations at the CCSD/aVIZ level of theory,²²⁴ using a continuum solvent model (CH₃CN), accurately reproduced the transition-state enthalpy observed by ¹⁹F NMR spectroscopy and showed a negative but negligible enthalpy for the formation of the F_2Xe ---F⁻ adduct in this solvent.

Figure 45 Calculated gas-phase geometries (PBE1PBE/aVTZ) of (a) the XeF_3^- anion (transition state, C_{2v} symmetry), and (b) the $F_2Xe---F^-$ adduct (ground state, C_s symmetry). Reproduced with permission from Vasdev, N.; Moran, M. D.; Tuononen, H. M.; Chirakal, R.; Suontamo, R. J.; Bain, A. D.; Schrobilgen, G. J. *Inorg. Chem.* **2010**, *49*, 8997–9004.

Figure 46 Electron localization function isosurfaces (contour level 0.7) of (a) XeF₂, (b) the $F_2Xe^{--}F^-$ adduct, and (c) the XeF₃⁻⁻ anion (calculated at the PBE1PBE/aVTZ level of theory). Color scheme: blue, lone-pair (monosynaptic) basin; red, core basin. Reproduced with permission from Vasdev, N.; Moran, M. D.; Tuononen, H. M.; Chirakal, R.; Suontamo, R. J.; Bain, A. D.; Schrobilgen, G. J. *Inorg. Chem.* **2010**, *49*, 8997–9004.

1.25.4 Xe(IV) Compounds

Among the principal formal oxidation numbers of xenon, +4 has been the least studied. Prior to 2000, the chemistry of Xe(IV) was limited to two XeF₃⁺ salts,²²⁵⁻²²⁷ XeF₅⁻,²⁰⁸ XeF₄,²²⁸⁻²³⁰ Xe (OTeF₅)₄,^{229,231,232} Xe(OTeF₅)_{4-x}F_x (x=0-3),²²⁹ C₆F₅XeF₂⁺,²³³ F₃XeOIOF₄,²³⁴ and F_xXe(OTeF₅)_{3-x}⁺ (x=0-2),²³⁵ and to preliminary reports of XeOF₂²³⁶⁻²³⁸ and XeOF₃⁻.²³⁸

1.25.4.1 Neutral Xe(IV) Species

1.25.4.1.1 [Mg(XeF₂)(XeF₄)][AsF₆]₂

A number of compounds have been synthesized in which XeF₂ and KrF₂ function as ligands (see Sections 1.25.3.2.3 and Section 1.25.7.1); however, only one compound, $[Mg(XeF_2)(XeF_4)][AsF_6]_2$, is presently known in which XeF₄ serves as a ligand. The difficulties encountered in forming XeF₄ adducts are attributable to the lower fluorobasicity of XeF₄ relative to those of XeF₂ and KrF₂. Reaction of a 1:1 or a higher molar ratio of XeF₄:XeF₂ with Mg(AsF₆)₂ in aHF yielded only $[Mg(XeF_2)(XeF_4)][AsF_6]_2$. In reactions involving the use of excess XeF₄, unreacted XeF₄ was removed under dynamic vacuum at room temperature. When a 2:1 or higher molar ratio of XeF₂:Mg was used, the only product was $[Mg(XeF_2)_2]$ [AsF₆]₂, which is again in accordance with the higher basicity of XeF₂ relative to that of XeF₄.²³⁹

The coordination around Mg^{2+} in the crystal structure of $[Mg(XeF_2)(XeF_4)][AsF_6]_2$ is pseudo-octahedral with four equatorial fluorine bridge contacts to four independent AsF_6^- anions and single fluorine bridge contacts to XeF_2 and XeF_4 that are trans to one another (Figure 47). The Mg^{2+} cations and AsF_6^- anions form chains with the trans-coordinated XeF_2 and XeF_4 molecules alternating positions (Figure 48).²³⁹

The Xe---F bridge bonds are elongated for both XeF_2 (2.059(7)Å) and XeF_4 (2.083(6)Å) relative to the Xe-F bond trans to it (1.936(7)Å and 1.871(7)Å, respectively).

Figure 47 The coordination environment of Mg^{2+} in the crystal structure of $[Mg(XeF_2)(XeF_4)][AsF_6]_2$. Reproduced with permission from Tavčar; G.; Žemva, B. *Angew. Chem., Int. Ed.* **2009**, *48*, 1432–1434.

Figure 48 View of the structure of [Mg(XeF₂)(XeF₄)][AsF₆]₂ along the *b*-axis. Reproduced with permission from Tavčar; G.; Žemva, B. *Angew. Chem., Int. Ed.* **2009**, *48*, 1432–1434.

The Xe–F bonds cis to the bridge bond of XeF₄ (1.916(7) and 1.906(7)Å) are also somewhat shorter than those in free XeF₄ (1.953(2)Å).²³⁰ The greater fluoride ion basicity of XeF₂ relative to that of XeF₄ is not clearly reflected in the Mg–F bond distances where the distance for XeF₂ (1.935(7)Å) appears to be slightly shorter than that of XeF₄ (1.956(7)Å), but the bond length difference is within $\pm 3\sigma$ and is not statistically significant. There is a secondary contact (3.103(8)Å) between a fluorine of XeF₂ in one layer with the xenon atom of XeF₄ in the next layer which helps stabilize the lattice.²³⁹

The Raman spectrum of $[Mg(XeF_2)(XeF_4)][AsF_6]_2$ was also compared with the Raman spectra of XeF₄ and $[XeF_3][SbF_6]$.²³⁹ The bands attributed to XeF₄ in the complex were intermediate with respect to those of XeF₄ and $[XeF_3][SbF_6]$ and therefore are consistent with XeF₄ coordination. The bands at 605, 596 (sh), and 552 cm⁻¹ were assigned to the XeF₄ ligand, coordinated to Mg²⁺, and the intense band at 575 cm⁻¹ was assigned to the stretching mode of the terminal Xe–F bond of coordinated XeF₂. A weak band at 460 cm⁻¹ was attributed to coupling between XeF₂ and XeF₄ vibrations but has not been explicitly assigned.

1.25.4.1.2 $XeOF_2$, $F_2OXeN \equiv CCH_3$, $XeOF_2 \cdot nHF$, and XeO_2

Although vibrational spectroscopic evidence for XeOF₂ had been communicated on three prior occasions, 236,237,240 these studies have not provided unambiguous characterizations or the isolation of XeOF2 as a pure phase. Co-condensation of H2O and XeF₄ vapors at low temperatures reportedly produced XeOF₂.^{236,237} In both studies, the IR spectra of the co-deposited thin films were in good agreement. Bulk co-condensed samples were also prepared and characterized by Raman spectroscopy.²³⁷ Both the bulk co-condensation product²³⁷ and the IR spectra obtained from thin films^{236,237} were subsequently shown to be mixtures of XeOF₂ and XeOF₂ · nHF.²⁴⁰ Shortly after these first reports, one of the components, XeOF₂ \cdot *n*HF, was synthesized in pure form by the hydrolysis of finely divided XeF_4 in HF at -63°C, characterized by Raman spectroscopy, and assigned to XeOF₂.²³⁸ These long-standing ambiguities among the published vibrational assignments ascribed to XeOF₂ were clarified when bulk syntheses of pure XeOF₂, as well as its HF and CH₃CN adducts, XeOF₂ · *n*HF and F₂OXeN \equiv CCH₃, were achieved.²⁴⁰

The low-temperature hydrolysis of XeF4 in a CH3CN solution containing 2.00 M H₂O resulted in the isolation of $F_2OXeN \equiv CCH_3$ (eqn [56]), which crystallized as pale yellow blades at -35 to -45 °C. Pure XeOF₂ was obtained by pumping on polycrystalline F₂OXeN≡CCH₃ for several hours at −45 to -42 °C, which resulted in removal of adducted CH₃CN, and yielded bright yellow XeOF₂ (eqn [57]). Solvolysis of XeOF₂ in aHF at -78 °C resulted in a pale yellow and insoluble powder attributable to $XeOF_2 \cdot nHF$ (eqn [58]). Removal of bound HF by pumping at -78 °C gave XeOF₂. In the case of XeOF₂ · *n*HF, it has been shown by calculation of the energy-minimized structures for XeOF₂ · HF and XeOF₂ · 2HF, and by comparison of the calculated and experimental vibrational frequencies resulting from ${}^{16/18}$ O and ${}^{1/2}$ H isotopic substitution, that *n* is most likely one, and that HF is coordinated to XeOF₂ by means of weak O---H and Xe---F bonds (Figure 49).²⁴⁰

$$\begin{array}{l} XeF_4 + H_2O + CH_3CN \xrightarrow{CH_3CN} \\ \xrightarrow{-45 \text{ to } -42 \circ C} \\ F_2OXeN \equiv CCH_2 + 2HF \end{array}$$
[56]

$$F_2 OXeN \equiv CCH_3 \xrightarrow[-45 \text{ to } -42 \circ C]{} XeOF_2 + CH_3CN \qquad [57]$$

$$XeOF_{2 (s)} + nHF \xrightarrow{HF}_{12 h, -78 \circ C} XeOF_{2} \cdot nHF$$
 [58]

All three compounds, $F_2OXeN \equiv CCH_3$, $XeOF_2$, and $XeOF_2 \cdot nHF$, were kinetically stable at -78 °C for indefinite periods of time, but decomposed rapidly to explosively with emission of blue light upon warming to 0 °C.²⁴⁰ Two decomposition pathways were proposed based on controlled

Figure 49 The geometry of XeOF₂·HF calculated at the MP2/(SDB-) cc-pVTZ level. Reproduced with permission from Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2007**, *129*, 3598–3611.

low-temperature decompositions of solid XeOF₂ and XeOF₂ in CH₃CN solutions monitored by Raman and ¹⁹F NMR spectroscopy, respectively. The major gas-phase decomposition pathway was O₂ elimination to produce XeF₂, whereas the minor pathway was disproportionation to XeF₂ and XeO₂F₂. Both pathways are supported by large negative ΔH_{rxn}^{o} and ΔG_{rxn}^{o} values (eqns [59] and [60]).

$$XeOF_{2(g)} \rightarrow XeF_{2(g)} + \frac{1}{2}O_{2(g)}$$
 [59]

$$\Delta H^{o}_{rxn} = -245.8 \text{ kJ mol}^{-1}$$

$$\Delta G^{o}_{rxn} = -259.3 \text{ kJ mol}^{-1} \text{ MP2/(SDB-)cc-pVTZ}$$

$$2XeOF_{2(g)} \rightarrow XeF_{2(g)} + XeO_{2}F_{2(g)}$$
[60]

$$\Delta H^{o}_{rxn} = -98.8 \text{ kJ mol}^{-1}$$

$$\Delta G^{o}_{rxn} = -86.9 \text{ kJ mol}^{-1} \text{ MP2/(SDB-)cc-pVTZ}$$

By contrast with aHF solvent, XeOF₂ has an appreciable solubility in CH₃CN, allowing the characterization of $F_2OXeN \equiv CCH_3$ by ¹⁹F, ¹⁷O, and ¹²⁹NMR spectroscopy.²⁴⁰ The ¹⁹F NMR spectrum of $F_2OXeN \equiv CCH_3$ consisted of a singlet (-48.8 ppm) with accompanying ¹²⁹Xe satellites corresponding to ¹*J*(¹⁹F-¹²⁹Xe) = 3446 Hz. A triplet (δ (¹²⁹Xe), 242.3 ppm) arising from ¹*J*(¹²⁹Xe-¹⁹F)=3447 Hz was observed in the ¹²⁹Xe NMR spectrum. Separate resonances for bound and free CH₃CN were not observed, suggesting that the interaction(s) were labile under the conditions used to obtain their spectra.

Oxygen-17 enriched water (35.4%, ¹⁶O; 21.9%, ¹⁷O; 42.77%, ¹⁸O) dissolved in CH₃CN was used to synthesize Xe¹⁷OF₂.²⁴⁰ The central line and its ¹²⁹Xe satellites in the ¹⁹F NMR spectrum were split as a result of the secondary isotope effect of ¹⁶O and ¹⁸O on the ¹⁹F chemical shift $[^{2}\Lambda^{19}F(^{18/16}O) = -0.0136 \text{ ppm}]$ and is the only two-bond isotope shift that has been observed for a xenon compound. A broad resonance at $\delta(^{17}O) = 209 \text{ ppm}$ ($\Delta v_{1/2} = 1300 \text{ Hz}$) in the ¹⁷O NMR spectrum was assigned to XeOF₂ and a weak, but very sharp resonance at $\delta(^{17}O) = 77.7 \text{ ppm}$ ($\Delta v_{1/2} = 10 \text{ Hz}$) was tentatively assigned to acetonitrile *N*-oxide, CH₃C=N⁺-O⁻. The latter was presumed to have formed by XeOF₂ attack of CH₃CN.²⁴⁰

The solid-state ¹⁶O- and ¹⁸O-enriched vibrational spectra of XeOF₂ and the calculated energy-minimized dimer and trimer geometries, and their vibrational frequencies, point to an extended structure in which neighboring XeOF₂ molecules

weakly interact by means of asymmetric –O---Xe–O--- bridges and weaker Xe---F contacts.²⁴⁰ The solid-state ¹⁶O- and ¹⁸O-enriched vibrational spectra of F₂OXeN \equiv CCH₃ and the calculated energy-minimized geometries and their vibrational frequencies show that v(Xe–O) decreases across the series F₂OXeN \equiv CCH₃ (754.7, 762.4, 766.8 cm⁻¹), XeOF₂ (749.9 cm⁻¹), and XeOF₂ · *n*HF (733.5 cm⁻¹). This is in accordance with the decreased double-bond character that accompanies oxygen coordination in XeOF₂ and XeOF₂ · *n* HF.²⁴⁰

Although considerably weaker than any of the presently known Xe(II)−N bonds, the crystal structure of F₂OXeN≡CCH₃ provides the only example of a Xe(IV)-N bond.²⁴⁰ Two adduct conformations were observed where the coordinated CH₃CN molecule lies in the XeOF₂ plane, or is bent out of the XeOF₂ plane as a consequence of crystal packing (Figure 50). The primary xenon coordination sphere is a T-shaped arrangement of two valence electron lone pairs and an oxygen double-bond domain in the equatorial plane and two mutually trans-fluorine atoms perpendicular to that plane. The Xe–O bond lengths were equal for both conformers (1.778(4), 1.782(4)Å) while the Xe-F bond lengths of the out-of-plane conformation (1.975(3), 1.981 (3)Å) were slightly elongated relative to the Xe–F bond lengths of the in-plane conformation (1.952(3), 1.958(3)Å). These elongations correspond to a shorter Xe-N bond length for the out-of-plane conformation (2.752(5)Å) relative to that of the in-plane conformation (2.808(5)Å).

Shortly after the discovery of noble-gas reactivity, it was shown that hydrolysis of XeF₆ gave XeO₃ which was isolated as a white solid.^{241,242} Soon thereafter, the pale yellow, volatile solid, XeO₄, was synthesized.^{243,244} Both oxides are shock sensitive and highly endothermic ($\Delta H_f XeO_3$, 402 kJ mol⁻¹,²⁴⁵ XeO₄, 643 kJ mol⁻¹ ²⁴⁶). Monomeric XeO has not been synthesized, but it has been shown by gas-phase quantum-chemical calculations to have an unstable ¹ Π ground state.²⁴⁷ Studies of the hydrolysis of XeF₄ initially postulated that

the product was Xe(OH)₄ or XeO₂·2H₂O,²⁴⁸ but subsequent studies showed the product to be XeO₃, which resulted from redox disproportionation (eqn [61]).^{249,250} Another early hydrolysis study of XeF₄ in aqueous H₂SO₄ reported a transient yellow solid at 0 °C which was never isolated or characterized.²⁵¹

$$4XeF_4 + 8H_2O \xrightarrow{H_2} 2XeO_3 + 2Xe + O_2 + 16HF$$
 [61]

Recently, the yellow solid was investigated by low-temperature Raman spectroscopy and shown to be the missing Xe(IV) oxide, XeO₂.²⁵² Xenon dioxide was synthesized at 0 °C by hydrolysis of XeF₄ in water and in 2.00 M H₂SO₄ (eqn [62]). Vibrational assignments were aided by ^{16/18}O isotopic enrichment.

$$nXeF_4 + 2nH_2O \rightarrow (XeO_2)_n + 4nHF$$
 [62]

The striking similarity between the Raman spectrum of XeO₂ and that of XeF₄ ²⁵³ (see Table 6) led to the conclusion that XeO₂ does not exist as a bent monomer (Structure I), but possesses an extended structure in which Xe(IV) is oxygen bridged to four neighboring oxygen atoms to give a local square-planar XeO₄ geometry based on an AX₄E₂ VSEPR (valence shell electron pair repulsion) arrangement of bond pairs and valence electron lone pairs (Structure II).²⁵²

Figure 50 The X-ray crystal structure of $F_2OXeN \equiv CCH_3$ showing two independent structural units with thermal ellipsoids shown at the 50% probability level. Reproduced with permission from Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. **2007**, 129, 3598–3611.

XeF4 ^b	Xe ¹⁶ O ₂ ^c	Xe ^{16/18} O2 ^{c,d}	Xe ¹⁸ O2 ^c	D_{2d}^{e}	Assgnts $(L=F, O)^{t}$
$ \left. \begin{array}{c} 586 \ v_{6}, v(E_{u}) \\ 554 \ v_{1}, v(A_{1g}) \\ 524 \ v_{4}, v(B_{2g}) \\ 291 \ v_{3}, v(A_{2u}) \\ 218 \ v_{2}, v(B_{1g}) \\ n.0. \ v_{5}, v(B_{2u}) \\ 161 \ v_{7}, v(E_{u}) \end{array} \right\} $	632.3(1) 570.3(100) 283.9(3) { 239.1(2) 227.9(4) n.0. 168.9(13) 99.5(14)	626.5sh 550.9(100) 276.9(2) 231sh 221.3(4) n.o. 165.0(19) 99.3(17)	625.8(1) 542.6(100) 270.0(3) 226.6(2) 216.9(6) n.o. 161.1(13) 99.5(15)	$\begin{cases} \nu(E) \\ \nu(A_1) \\ \nu(B_2) \\ \nu(B_2) \\ \nu(B_1) \\ \nu(A_2) \\ \nu(E) \end{cases}$	$\begin{array}{l} \nu_{as}(\text{XeL}_t-\text{XeL}_t)\\ \nu_s(\text{XeL}_4)\\ \nu_{as}(\text{XeL}_{2t}-\text{XeL}_{2t})\\ \delta(\text{XeL}_4) \text{ o.o.p., umbrella mode}\\ \delta(\text{XeL}_{2c}+\text{XeL}_{2c})\\ \delta(\text{XeL}_{2t}) \text{ o.o.p.} - \delta(\text{XeL}_{2t}) \text{ o.o.p.}\\ \delta(\text{XeL}_{2t}) \text{ i.p.}\\ \text{lattice mode} \end{array}$

Table 6 Vibrational frequencies for XeF_4 , $Xe^{16}O_2$, $Xe^{16/18}O_2$, and $Xe^{18}O_2^a$

^aFrequencies are given in cm⁻¹.

^bFrom Ref. 253. The symmetries refer to the D_{4h} point symmetry of XeF₄.

^cValues in parentheses denote Raman intensities.

^dThe sample was prepared by hydrolysis of XeF₄ in an equimolar mixture of H₂¹⁶O and H₂¹⁸O

^eThe symmetries refer to the local D_{2d} point symmetry of the XeO₄ units in the extended structure of XeO₂.

^TThe abbreviations denote trans (t), cis (c), symmetric (s), asymmetric (as), stretch (v), bend (δ), in-plane bend (i.p.), and out-of-plane bend (o.o.p.). The in-plane and out-of-plane mode descriptions are relative to the molecular planes of XeF₄ and the XeO₄-unit.

^gThis mode was not directly observed. The frequency was obtained from the $2v_7$ overtone at 322 cm⁻¹.

Source: Reproduced with permission from Brock, D. S.; Schrobilgen, G. J. J. Am. Chem. Soc. 2011, 133, 6265–6269.

Xenon dioxide also has implications for understanding xenon depletion from the atmospheres of Earth and Mars. Both atmospheres are depleted by a factor of approximately 20 relative to the lighter noble gases based on comparisons with chondrites.²⁵⁴ A number of explanations have been advanced to account for atmospheric xenon depletion; however, the majority have been shown to be untenable,²⁵⁵ including a recent explanation²⁵⁶ which proposed that reaction between xenon and iron may occur at high pressures and high temperatures. Xenon has been shown to undergo metallization at high pressures and high temperatures, forming an hcp lattice, similar to that of iron. It was shown, however, that no compounds and no detectable dissolution of xenon into crystalline hcp iron occur even above the metallization pressure of xenon and that the ratio of hcp xenon and iron actually varies in opposite directions with increasing pressure.²⁵⁶

A proposal that xenon may be covalently bonded within SiO_2^{255} gained credibility when the most intense band in the Raman spectrum of XeO_2^{252} was shown to agree closely with a vibrational band observed in xenon-doped $SiO_2^{.255}$ The former study proposed that xenon displaces silicon from quartz (SiO₂) at the high pressures (0.7–5 GPa) and temperatures (500–1500 K) that are encountered in the continental crust, with the implication that xenon may be retained within silicate minerals and SiO_2 as $XeO_2^{.255}$ The high abundance of SiO_2 would serve as a readily available reservoir for xenon and the experimental results indicated that xenon is covalently bound to oxygen in the SiO_2 lattice (~2.2 wt.% at 10 GPa and 2273 K).

A related ab initio study also proposed incorporation of xenon into SiO₂ as a covalently bound Xe–O species.²⁵⁷ The energies associated with the incorporation of Xe into interstitial sites, along with the valencies of Si and O in SiO₂, were calculated. The study showed that while there was a barrier to insertion at all sites at T=0 K, at the temperatures and pressures encountered in the Earth's crust, incorporation of Xe into interstitial spaces was energetically favorable. Under the aforementioned experimental conditions,²⁵⁵ xenon could be incorporated at the Si site if the process occurred in two stages,

namely, the elimination of Si to produce peroxide linkages, followed by the incorporation of xenon.²⁵⁷

1.25.4.2 Xe(IV) Cations

As noted in Sections 1.25.3.1.1 and 1.25.3.2, organoxenon(II) compounds have been prepared in the form of cationic xenonium compounds, [RXe][X], and neutral species having the general formulae, RXeF and RXeR'. In most cases, Xe(II)-C bond formation occurs through nucleophilic substitution with organoboranes, also referred to as xenodeborylation (eqn [63]), and, in some specific cases, through electrophilic substitution on electron-poor aromatic compounds, also referred to as xenonylation (eqn [64]).

$$XeF_2 + RBX_2 \rightarrow [RXe][BF_2X_2]$$
 [63]

$$X - Xe - Y + C_6 H_x (CF_3, F)_{6-x} \rightarrow [(C_6 H_{x-1} (CF_3, F)_{5-x})Xe][X] + HY$$
[64]

The former method was successfully used with XeF₄ to synthesize the first organoxenon(IV) compound.²³³ The increased oxidation potential of XeF₄ relative to XeF₂ requires oxidatively resistant reactants and products having electron-poor organic groups. These criteria were achieved by the use of C₆F₅BF₂, which yields BF₄⁻ as the counteranion. In addition, the Lewis acidity of C₆F₅BF₂ is sufficient to polarize the hypervalent F–Xe–F bond, allowing transfer of the C₆F₅ group without initial complete fluoride ion abstraction.

Dichloromethane proved to be a suitable solvent, having the added advantage of facilitating the isolation of the insoluble product salt. As a result, $[C_6F_5XeF_2][BF_4]$ could be obtained in nearly quantitative yield by the reaction of $C_6F_5BF_2$ with a suspension of XeF₄ in CH₂Cl₂ at -55 °C (eqn [65]):²³³

$$C_{6}F_{5}BF_{2} + XeF_{4} \xrightarrow[-55\ \circ C]{} C_{6}F_{5}XeF_{2}][BF_{4}] \qquad \mbox{[65]}$$

Other solvents were ineffective because solvents that were too acidic resulted in oxidation of the aromatic system and basic solvents, such as CH₃CN, hindered nucleophilic substitution to an extent that the desired product was not observed. The salt, $[C_6F_5XeF_2][BF_4]$, was a yellow solid that decomposed above $-2 \,^{\circ}C$ and was insoluble in CH₂Cl₂, but soluble in CH₃CN, forming a bright yellow solution which was characterized by ¹⁹F, ¹²⁹Xe, ¹³C, and ¹¹B NMR spectroscopy at $-40 \,^{\circ}C$. The C₆F₅XeF₂⁺ cation and the neutral isoelectronic C₆F₅IF₂ molecule are predicted to have T-shaped geometries based on AX₂YE₂ VSEPR arrangements.²³³

The ¹⁹F NMR chemical shifts of the *p*-F and *m*-F substituents of the C₆F₅ ring in C₆F₅XeF₂⁺ were significantly shifted to high frequency relative to those of C₆F₅IF₂. The ¹⁹F resonances (-40 °C) of the axial fluorine atoms bound to Xe(IV) of the cation occurred at -29.54 ppm with ¹/(¹⁹F-¹²⁹Xe)=3893 Hz. The *o*-F, *p*-F, and *m*-F environments of the C₆F₅ group occurred at -125.5, -134.97, and -153.44 ppm, respectively, and BF₄⁻ occurred at -149.01 ppm. The ¹²⁹Xe NMR spectrum consisted of a triplet centered at -1706.5 ppm, which is significantly more shielded with respect to XeF₄ (316.9 ppm),²⁰⁸ displaying the same trend that was observed when going from XeF₂ (-1784.5 ppm) to C₆F₅Xe⁺ (-3807.8 ppm). The ¹³C chemical shift of carbon bound to Xe appeared at 121.86 ppm.²³³

The strong oxidative fluorinating ability of the XeF₂ moiety in C₆F₅XeF₂⁺ is indicated by the oxidation of P(C₆F₅)₃ to (C₆F₅)₃PF₂, I₂ to IF₅, and C₆F₅I to C₆F₅IF₂ with the formation of the reduction product, C₆F₅Xe⁺. The latter reactions have been achieved with other typically strong oxidizing agents such as F₂,²⁵⁸ XeF₂,²⁵⁹ ClF, ClOCF₃, Cl₂O,²⁶⁰ and HNO₃/ (CF₃CO)₂O.^{233,261}

The crystal structure of $[XeF_3][Sb_2F_{11}]$, which has previously been reported,⁴⁶ has been redetermined at -173 °C, yielding a higher precision structure.⁹³ In an early attempt to synthesize $[XeF_3][As_2F_{11}]$ from XeF₄ and excess liquid AsF₅ at -100 °C, only $[XeF_3][AsF_6]$ was obtained with no evidence for $[XeF_3][As_2F_{11}]$.²⁶² More recent estimates of the corresponding gas-phase free energies of $[XeF_3][AsF_6]$ and $[XeF_3][As_2F_{11}]$ using volume-based thermodynamics (VBT) suggest instability or marginal stability for $[XeF_3][AsF_6]$ ($\Delta G = 14 \pm 15$ kJ mol⁻¹) and $[XeF_3][As_2F_{11}]$ ($\Delta G = 20 \pm 26$ kJ mol⁻¹) when the calculated errors are taken into account.⁹³

1.25.4.3 The $XeOF_3^-$ Anion

Although the XeOF₃⁻ anion was reported previously,²³⁸ there were several ambiguities with regard to vibrational band assignments. With a high-yield synthesis of XeOF₂ in hand (see Section 1.25.4.2.1), the fluoride ion acceptor properties of XeOF₂ were investigated by the syntheses of the endothermic salts, [M][XeOF₃] (M=N(CH₃)₄, Cs), in high yields and purities.²⁶³ The salts were synthesized by the reaction of XeOF₂ with [M][F] in CH₃CN solvent (eqn [66]) and are kinetically stable at -78 °C, slowly decomposing at 10–25 °C (eqns [67] and [68]).

$$XeOF_2 + [M][F] \xrightarrow{CH_3CN}_{-45 \text{ °C}} [M][XeOF_3]$$
[66]

$$[M][XeOF_3] \to XeF_2 + \frac{1}{2}O_2 + [M][F]$$
[67]

$$[M][XeOF_3] \rightarrow \frac{1}{2}XeF_2 + \frac{1}{2}[M][XeO_2F_3] + \frac{1}{2}[M][F]$$
 [68]

The decomposition pathways were inferred by monitoring the salt decompositions by Raman spectroscopy. The decomposition pathways were supported by their calculated thermochemical cycles at 25 °C which showed that the proposed reduction and disproportionation pathways are mainly driven by lattice energy contributions, with entropy playing a significant role in the pathways that led to reduction of Xe(IV) to Xe(II) and O₂ evolution. The thermochemical cycles also revealed that disproportionation of Xe(IV) to Xe(II) and Xe(VI) is favored for [Cs][XeOF₃] but not for [N(CH₃)₄][XeOF₃], in accordance with the experimental findings.²⁶³

The $XeOF_3^-$ anion is presently the only known example of an AX₃YE₂ VSEPR arrangement in which a double-bond domain (Xe=O) subtends angles of $\sim 90^{\circ}$ with two valence electron lone-pair domains (Figure 51).²⁶³ When the solidstate ¹⁶O- and ¹⁸O-enriched vibrational spectra of [N(CH₃)₄] [XeOF₃] were compared with those of the calculated gas-phase $Xe^{16/18}OF_3^{-}$ anions, little interaction between the anion and cation was indicated. The highest frequency band associated with the anion (730.1 cm⁻¹) was attributed to the Xe-O stretch, with the bands at 447.6, 457.3, and 471.3 cm^{-1} assigned to the Xe-F stretching modes. Comparison of the Raman spectra of the Cs⁺ and N(CH₃)₄⁺ salts of XeOF₃⁻ also showed that significant interactions occur between the Cs⁺ cation and the oxygen atom of the XeOF₃⁻ anion. The Xe-O stretching band of [Cs][XeOF₃] appeared as two bands that were shifted to high frequency relative to those of the $N(CH_3)_4^+$ salt by as much as 30 cm⁻¹ (748.9 and 759.6 cm⁻¹). The Xe–F stretching modes, which were likely factor-group split, were also shifted to slightly higher frequencies, occurring at 470.2, 474.5, 483.8, and 487.7 cm⁻¹. In contrast with the $N(CH_3)_4^+$ salt, additional bands were observed between 223.4 and 276.4 cm⁻¹ in the spectrum of [Cs][XeOF₃], indicating that the anions interact with one another through F---Xe fluorine bridges.

When the experimental frequencies of $[Cs][XeOF_3]^{263}$ were compared with those previously reported for $[Cs][XeOF_3]$,²³⁸ it was clear that the product obtained in the earlier study was a mixture of XeF₂, XeOF₂, $[Cs][XeF_5]$, and $[Cs][XeO_3F]$. Thus, the latter work represents the first authentic synthesis and characterization of the XeOF₃⁻ anion.²⁶³

Quantum-chemical calculations were used to examine the structural effects of fluoride addition to $XeOF_2$ and to compare and confirm vibrational frequency assignments and isotopic shifts. NBO analyses and natural population analysis (NPA) for the atomic charges were also carried out.²⁶³

Figure 51 Calculated geometries [B3LYP/aug-cc-pVTZ(-PP)] for (a) XeOF₃⁻⁻ and (b) XeOF₂. Reproduced with permission from Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **2010**, *132*, 10935–10943.

1.25.5 Xe(VI) Compounds

1.25.5.1 X-ray Crystal Structures of XeF₆

A comprehensive study of the crystallographic modifications of XeF₆ has revealed, based on single-crystal X-ray diffraction, neutron powder diffraction, solid-state MAS NMR, and DSC, that XeF₆ exists in at least seven different modifications.²⁶⁴ Three modifications form at temperatures above room temperature, one exists at room temperature, while two have been identified at low temperatures.²⁶⁴ Four of these phases corresponding to *mP*8 (phase I), *oP*16 (phase II), *mA*64 (phase III), and *cF*144 (phase IV) had been previously studied by diffraction methods.^{265–269} In the early work, only the lattice constants, possible space groups, and approximate xenon positions were given²⁶⁸ and only the structure having the cubic space group (IV) was subjected to further refinement.²⁶⁹

More recently, marginal improvements in the structural data for the four known modifications were achieved.²⁶⁴ The latter study also showed that two high-temperature modifications (mP32 and mC32) of XeF₆ form which are comprised of asymmetric tetramers. These structures are closely related, only differing by the ordering imposed by the C-centered unit cell. The asymmetric tetramers consist of cyclic XeF₆ trimers that are weakly associated with a monomer, that is, $(XeF_5^+F^-)_3 \cdot XeF_6$ (Figure 52). The normal roomtemperature modification, previously described as the cubic (cF144) phase IV, has disordered tetrameric and hexameric XeF₅⁺F⁻ units in its unit cell.²⁶⁴ Crystallization of a tetrameric phase of XeF₆ (mP16) from inert solvents such as n-C₆F₁₄/ $n-C_4F_9SO_2F_1$, CF_2Cl_{21} , or by maintaining neat XeF₆ for greater than 1 week at -40 °C provided an ordered low-temperature modification (mP16).²⁶⁴ The structure consists of regular $(XeF_5^+F^-)_4$ units (Figure 53) and represents the best example of a regular XeF₆ tetramer. Crystallization of XeF₆ from HF vielded symmetric dimers that may be formulated as $(XeF_5^+)_2(HF_2)^-$ (Figure 54).²⁶⁴

1.25.5.2 Cationic Species

1.25.5.2.1 [XeF₅][μ -F(OsO₃F₂)₂], [XeF₅][OsO₃F₃], and [Xe₂F₁₁][OsO₃F₃]

The title series of Xe(IV) salts has provided the first examples of noble-gas cations that are stabilized by metal oxide fluoride anions, with $[XeF_5][\mu$ -F(OsO₃F₂)₂] providing the first example of a salt of the fluorine-bridged μ -F(OsO₃F₂)₂⁻ anion.²⁷⁰

Fusion of stoichiometric mixtures of XeF_6 and $(OsO_3F_2)_{\infty}$ at 25-50 °C resulted in the formation of [XeF₅] $[\mu$ -F(OsO₃F₂)₂], [XeF₅][OsO₃F₃], and [Xe₂F₁₁][OsO₃F₃].²⁷⁰ Fluoride/oxide metathesis with the formation of XeOF₄ was not observed in fusion reactions with $(OsO_3F_2)_{\infty}$, even though XeF₆ is very oxophilic toward a number of transition metal and main-group oxides and oxide fluorides. Both [XeF5] $[\mu$ -F(OsO₃F₂)₂] and [Xe₂F₁₁][OsO₃F₃] are orange solids at room temperature and [XeF₅][OsO₃F₃] is an orange liquid at room temperature that solidifies at 5-0 °C. All three salts are room-temperature stable but significant dissociation to the starting materials occurs when they are heated at 50 °C under 1 atm of N₂ for more than 2 h. The X-ray crystal structures $(-173 \,^{\circ}\text{C}, \text{ Figure 55})$ show that the salts exist as discrete ion pairs and that the osmium coordination spheres in OsO₃F₃⁻ and μ -F(OsO₃F₂)₂⁻ are pseudo-octahedral OsO₃F₃-units having facial arrangements of oxygen and fluorine atoms. The geometries of the XeF5+ and Xe2F11+ cations, which have been previously well established by X-ray crystallography, are in close agreement with other salts of these cations. $^{132,141,271-277}$ The μ -F(OsO₃F₂)₂⁻ anion is comprised of two symmetry-related OsO3F2 groups that are fluorinebridged to one another. Ion pairing results from secondary bonds between the F/O atoms of the anions and xenon of the cation, with the $Xe \cdots F/O$ contacts occurring opposite the axial fluorine and from beneath the equatorial XeF4 planes of the XeF_5^+ and $Xe_2F_{11}^+$ cations. These interactions avoid the free valence electron lone pairs of the xenon atoms and have been observed in other ${\rm XeF_5}^+$ and ${\rm Xe_2F_{11}}^+$ salts. $^{132,141,271-277}$ The

Figure 52 The trimer and monomer units in the crystal structure of XeF₆ (mP32), with thermal ellipsoids drawn at the 50% probability level. Reproduced with permission from Hoyer, S.; Emmler, T.; Seppelt, K. *J. Fluorine Chem.* **2006**, *127*, 1415–1422.

Figure 53 The tetramer unit $(XeF_6)_4$ of the low-temperature phase, XeF_6 (mP16), with thermal ellipsoids drawn at the 50% probability level. Reproduced with permission from Hoyer, S.; Emmler, T.; Seppelt, K. *J. Fluorine Chem.* **2006**, *127*, 1415–1422.

Figure 54 The dimer unit $(XeF_5^+)_2$ (HF₂⁻) in XeF₆ · 1.5HF with thermal ellipsoids drawn at the 50% probability level. Reproduced with permission from Hoyer, S.; Emmler, T.; Seppelt, K. *J. Fluorine Chem.* **2006**, *127*, 1415–1422.

xenon atoms of $[XeF_5][\mu$ -F(OsO₃F₂)₂] and $[Xe_2F_{11}][OsO_3F_3]$ are nine-coordinate and that of $[XeF_5][OsO_3F_3]$ is eightcoordinate. The geometrical parameters of the OsO₃F₃⁻ anions are closer to those of neutral trioxo Os(VIII) species,²⁷⁸ indicating that XeF₅⁺ and Xe₂F₁₁⁺ withdraw significant electron density from the anion by means of their secondary bonding interactions with the anion. Quantum-chemical calculations have been successfully used to model the ion pairs and their component ions, providing energy-minimized geometries that are in very good agreement with the experimental structures. The Raman spectra of these salts have been fully assigned based on the calculated vibrational modes.²⁷⁰

1.25.5.2.2 $(0sO_3F_2)_2 \cdot 2XeOF_4$ and $[XeF_5][SbF_6] \cdot XeOF_4$

The $(OsO_3F_2)_2$ · 2XeOF₄ adduct has been synthesized by dissolution of $(OsO_3F_2)_{\infty'}$ in liquid XeOF₄ at room temperature followed by removal of excess liquid XeOF₄ under dynamic vacuum at 0 °C.²⁷⁸ As in the case of the dissolution of $(OsO_3F_2)_{\infty}$ in molten XeF₆, XeOF₄ did not undergo F/O metathesis with the formation of cis-OsO₂F₄ and XeO₂F₂. The adduct is stable at room temperature for up to 5 h, slowly dissociating to $(OsO_3F_2)_{\infty}$ and XeOF₄. Continued pumping on (OsO₃F₂)₂·2XeOF₄ at 0 °C resulted in the removal of associated XeOF4, yielding (OsO3F2)2, a new low-temperature phase of OsO₃F₂. Upon standing at 25 °C for 11/2 h, (OsO₃F₂)₂ underwent an irreversible phase transition to the known monoclinic phase, $(OsO_3F_2)_{\infty}$, a polymeric chain structure. Crystallization of (OsO3F2)2·2XeOF4 from XeOF4 solution at 0 °C yielded light orange crystals suitable for X-ray structure determination. The structural unit (Figure 56) contains the $(OsO_3F_2)_2$ dimer in which the OsO_3F_3 units are joined by two Os---F---Os bridges. The dimer coordinates to two XeOF₄ molecules through Os-F---Xe bridges in which the Xe---F distances (2.757(5)Å) are significantly less than the sum of the Xe and F van der Waals radii (3.63 Å).³⁴ The $(OsO_3F_2)_2$ dimer has C_i symmetry in which the primary coordination spheres of the osmium atoms are fac-OsO3F3 arrangements in which the oxygen ligands are cis to one another and the bridging fluorine atoms are trans to an oxygen ligand. The XeOF₄ molecules are only slightly distorted from the gas-phase square pyramidal geometry of XeOF₄ obtained from previous microwave and electron diffraction structural studies.^{279,280}

The reaction of $[H_3O][SbF_6]$ with XeF₆ at 0 °C in HF solvent (eqn [69]) has provided crystalline [XeF₅][SbF₆] · XeOF₄.²⁷³

$$2XeF_6 + [H_3O][SbF_6] \rightarrow [XeF_5][SbF_6] \cdot XeOF_4 + 3HF$$
[69]

An earlier study had shown that the reaction between liquid $XeOF_4$ and $[KrF][SbF_6]$ yielded a mixture of $[O_2][SbF_6]$ and $[XeF_5][SbF_6] \cdot XeOF_4$.²⁸¹ The solid mixture was characterized by Raman spectroscopy and in HF solution by ¹⁹F NMR spectroscopy.

The crystal structure of $[XeF_5][SbF_6] \cdot XeOF_4$ is comprised of a well-separated XeOF₄ molecule and a fluorine-bridged $[XeF_5][SbF_6]$ ion pair (**Figure 57**).²⁷³ The structure of XeOF₄ is a square-based pyramid of approximate C_{4v} symmetry corresponding to an AX₄YE VSEPR arrangement of bond-pair and lone-pair domains. The geometric parameters obtained for XeOF₄ are in good agreement with the gas-phase values.^{279,280} The XeF₅⁺ and SbF₆⁻ ions are well separated but interact through fluorine bridges with consequent distortion of the SbF₆⁻ anion from its regular octahedral geometry. The XeF₅⁺ cation exhibits a distorted square-based pyramidal geometry corresponding to an AX₅E VSEPR arrangement, which has been well characterized in previous X-ray crystallographic studies.^{132,141,271,274,275}

Figure 55 The structural units in the X-ray crystal structures of (a) $[XeF_5][\mu$ -F(OsO₃F₂)₂], (b) $[Xe_2F_{11}][OsO_3F_3]$, and (c) $[XeF_5][OsO_3F_3]$ with thermal ellipsoids drawn at the 70% probability level. Reproduced with permission from Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.*, **2010**, *49*, 3501–3515.

Figure 56 The structural unit in the X-ray crystal structure of $(0SO_3F_2)_2 \cdot 2XeOF_4$ with thermal ellipsoids drawn at the 70% probability level. Reproduced with permission from Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* **2009**, *48*, 4478–4490.

1.25.5.2.3 [XeF₅]₃[Ti₄F₁₉]

The reaction between TiF₄ and a stoichiometric excess of XeF₆ at ambient temperature has been shown to yield $(XeF_6)_4 \cdot TiF_4$.²⁸² The compound dissociates under dynamic vacuum at 40 °C to give XeF₆ and XeF₆ $\cdot TiF_4$, which, in turn, dissociates at 65 °C into XeF₆ and XeF₆ $\cdot 2TiF_4$.²⁸² Although the compositions of these phases have been determined by elemental analysis, and their IR spectra and magnetic susceptibilities have been reported,²⁸² no structural data for these or related TiF₄ complexes existed until a recent study.²⁸³

Reactions between different initial molar ratios of XeF₂ and TiF₄ were investigated $[n(XeF_2)/n(TiF_4) = 4:1, 3:1, 2:1, 1:1, 1:2, 1:3]$. Mixtures of XeF₂ and TiF₄ in aHF solvent were UV-irradiated under 6 bar of F₂ gas at room temperature to obtain the complex salts. Although several crystalline products were observed, only the crystal structure of $3XeF_6 \cdot 4TiF_4$ could be determined. The synthesis of $3XeF_6 \cdot 4TiF_4$ was later achieved by the photochemical fluorination of a XeF₂/TiF₄ mixture in aHF using a 3:4 molar ratio of XeF₂/TiF₄.²⁸³

The $[XeF_5]_3[Ti_4F_{19}]$ complex was prepared by the reaction of XeF₂, TiF₄, and UV-irradiated F₂ in aHF. The crystal structure (Figure 58) of $[XeF_5]_3[Ti_4F_{19}]$ consists of the previously known XeF₅⁺ cations and Ti₄F₁₉³⁻ anions. The XeF₅⁺ cations have the usual distorted pseudo-octahedral symmetry where the equatorial Xe–F bonds are bent away from the axial electron lone pair toward the axial Xe–F bond.^{132,141,270,271,274,275} Contrary to the previously reported Ti₄F₁₈²⁻ anion,^{284,285} where each TiF₆ octahedron shares three vertices with three other octahedra, only two μ_3 -[TiF₆] octahedra in [Ti₄F₁₉]³⁻ share three vertices with three other octahedra. The Raman spectrum of [XeF₅]₃[Ti₄F₁₉] is in accordance with the presence of XeF₅⁺ cations and Ti₄F₁₉³⁻ anions.²⁸³

1.25.5.2.4 XeO₂F⁺ and FO₂XeFXeO₂F⁺

The salts, α -[XeO₂F][SbF₆] and [XeO₂F][AsF₆], have been synthesized in aHF by reaction of equimolar amounts of XeO₂F₂ and MF₅ (M=As and Sb) and were isolated as very pale yellow to white solids upon removal of the solvent, initially at -78 °C and finally at 0 °C (eqn [70]).²⁷³ In the case of SbF₅, α -[XeO₂F] [SbF₆] was obtained.

$$XeO_2F_2 + MF_5 \rightarrow [XeO_2F][MF_6]$$
 [70]

Figure 57 The structural unit in the X-ray crystal structure of [XeF₅][SbF₆] · XeOF₄. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. *Inorg. Chem.* **2006**, *45*, 1517–1534.

Figure 58 The X-ray crystal structure of $[XeF_5]_3[Ti_4F_{19}]$ showing the $Ti_4F_{19}^{3-}$ anion and three crystallographically independent XeF₅⁺ cations. Thermal ellipsoids are drawn at the 40% probability level. Reproduced with permission from Mazej, Z.; Goreshnik, E. *Eur. J. Inorg. Chem.* **2009**, 4503–4506.

When XeO₂F₂ and SbF₅ were allowed to react in 1:2, 1:3, and 1:4 molar ratios in aHF at room temperature, tetrameric β -[XeO₂F][SbF₆] consistently crystallized at -45 to -78 °C.

The salt, $[FO_2XeFXeO_2F][AsF_6]$, was formed by dynamically pumping on solid $[XeO_2F][AsF_6]$ at 0 °C. The high dissociation vapor pressure of $[XeO_2F][AsF_6]$ resulted in rapid AsF₅ loss (eqn [71]) and the formation of pale yellow $[FO_2XeFXeO_2F]$ [AsF₆].

$$2[XeO_2F][AsF_6] \rightarrow [FO_2XeFXeO_2F][AsF_6] + AsF_5$$
[71]

Earlier studies had shown that SbF_5 solutions of $[XeO_2F]$ $[Sb_2F_{11}]$ rapidly decompose to XeF^+ and O_2 at room temperature²⁸⁶ and that solid $[XeO_2F][Sb_2F_{11}]$ decomposes over a period of several months at room temperature.^{262,287} The standard enthalpies and Gibbs free energies for reactions leading to $[XeO_2F][MF_6]$ and $[FO_2XeFXeO_2F][MF_6]$ salts from MF₅ (M=As, Sb) and XeO₂F₂ have been obtained from Born-Fajans-Haber cycles and are mildly exothermic and positive, respectively.²⁷³ However, XeO₂F⁺ and FO₂XeFXeO₂F⁺ salts can be synthesized from XeO₂F₂ and MF₅ at low temperatures in aHF. The positive enthalpies of these reactions and their contributions to the Gibbs free energies are apparently diminished by HF solvation of the reactants and products. The degree to which XeO₂F⁺ is stabilized and reaction spontaneity is promoted by HF solvation of XeO₂F⁺ has been assessed by calculating the basis set superposition error (BSSE)-corrected enthalpies and Gibbs free energies for successive solvation steps leading to $XeO_2F^+ \cdot xHF$ (x=1-5) at 298.15 and 195.15 K. While having considerable kinetic stabilities at room temperature, the enthalpies and Gibbs free energies for the decompositions of the MF_6^- and $Sb_2F_{11}^-$ salts of XeO_2F^+ to their corresponding XeF⁺ salts and O₂ are predicted to be

highly exothermic and spontaneous over a range of temperatures and are dominated by a large gas-phase enthalpy of decomposition for XeO_2F^+ . With the exception of $[XeO_2F]$ [AsF₆], the XeO_2F^+ and $FO_2XeFXeO_2F^+$ salts are kinetically stable toward dissociation to XeO_2F_2 and MF_5 at room temperature.

1.25.5.2.4.1 α-[XeO₂F][SbF₆]

The crystal structure of α -[XeO₂F][SbF₆] consists of discrete XeO_2F^+ cations and SbF_6^- anions that interact by means of secondary fluorine bridge contacts (Figure 59). The primary coordination sphere of xenon in XeO₂F⁺ is a trigonal pyramidal arrangement of the oxygen atoms and a fluorine atom. The isolated cation geometry is consistent with an AXY₂E VSEPR arrangement of a single-bond domain (X), two double-bond domains (Y), and a lone-pair domain (E). The Xe-F bond of XeO_2F^+ is shorter, within $\pm 3\sigma$, than in $XeOF_4$ (1.900(5);²⁷⁹ $1.901(3)-1.9040;^{280}$ 1.895(2), $1.890(2)Å^{273}$, and XeO_2F_2 (1.899(3);²⁸⁸ 1.892(13), 1.925(13)Å²⁸⁹) and intermediate with respect to $Xe - F_{ax}$ (1.879(12)Å), and $Xe - F_{eq}$ (1.821(12)Å) in $XeOF_3^+$.²⁹⁰ Although the net positive charge of the XeO_2F^+ cation leads to a shorter and less polar Xe-F bond, the Xe-O bond lengths in the XeO_2F^+ cation are similar to those of other xenon(VI) oxide fluorides (XeOF₄, 1.703(15),²⁷⁹ 1.7053(9)-1.711(11),²⁸⁰ 1.713(3)Å,²⁷³ XeOF₃⁺, 1.692(13)Å;²⁹⁰ XeO₂F₂, 1.714(4),²⁸⁸ 1.731(9)Å, ²⁸⁹ and XeO₃, 1.76(2) Å²⁴²). The O(1)–Xe(1)–O(2) (105.0(2)°), O(1)–Xe(1)–F(7) (95.7(1)°), and O(2)-Xe(1)-F(7) (98.2(1)°) bond angles of the XeO₂F⁺ cation are considerably less than the ideal tetrahedral angle. The xenon atom of each XeO₂F⁺ cation also has five nonequivalent secondary fluorine bridge contacts to five different SbF_6^- anions, which are significantly less than the sum of the xenon and fluorine van der Waals radii $(3.63 \text{ Å})^{34}$ indicating that these secondary contacts have substantial covalent character. The secondary contacts give rise to a distorted monocapped octahedral environment about the xenon atom

that is consistent with an AXY_2Z_3E VSEPR arrangement of one primary single-bond domain (X), two primary double-bond pair domains (Y), three secondary bond (contact) domains (Z), and one electron lone-pair domain (E).

1.25.5.2.4.2 β-[XeO₂F][SbF₆]

The unit cell of β -[XeO₂F][SbF₆] is comprised of three ([XeO₂F] [SbF₆])₄ units.²⁷³ The xenon and antimony atoms of each tetrameric unit occupy alternate vertices of a cube (Figure 60). The compound crystallizes in the space group *R*3 with the threefold axis of the unit cell passing through Xe(2) and Sb(2), resulting in positional disorder of the fluorine and oxygen atoms bonded to xenon. The average Xe–O/F bond lengths in the tetramer bracket the weighted average of the Xe–O and Xe–F bond lengths obtained for the ordered α -phase (1.772 Å).²⁷³ The Xe(1) atom has three secondary contacts to fluorine atoms of three SbF₆⁻ anions which are ~1 Å less than the sum of the xenon and fluorine van der Waals radii.³⁴ The Xe(2) atom also has three similar contacts to fluorine atoms of the SbF₆⁻ anions that are equivalent by crystal symmetry.

Although the exterior O/F–Xe(1)–O/F and O/F–Xe(2)– O/F angles are significantly more open by 17–24° than the angles formed by the interior Xe---F contacts, they provide sufficient space to accommodate the xenon valence electron lone pairs between the Xe(1)---F(10)/F(11)/F(9B) and Xe(2)---F(8)/F(8A)/F(8B) contacts. These arrangements of primary bonds, long contacts, and the xenon valence electron lone pair are similar to the distorted octahedral AXY₂Z₃E VSEPR arrangement in the crystal structure of α -[XeO₂F][SbF₆] (*vide supra*).

1.25.5.2.4.3 [XeO₂F][AsF₆]

The crystal structure of $[XeO_2F][AsF_6]$ was determined from a racemic twin crystal that also exhibited cubic twinning,

Figure 59 The structural unit in the X-ray crystal structure of α -[XeO₂F] [SbF₆]. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. *Inorg. Chem.* **2006**, *45*, 1517–1534.

Figure 60 The tetrameric uint in the X-ray crystal structure of β -[XeO₂F][SbF₆]. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. *Inorg. Chem.* **2006**, *45*, 1517–1534.

inducing a positional disorder between one oxygen and the fluorine atom of the XeO₂F⁺ cation.²⁷³ The disorder did not allow the extraction of discrete Xe–O and Xe–F bond lengths and angles for the oxygen and fluorine atoms that are involved in the disorder but did provide a reliable Xe(1)–O(1) bond length (1.740(10)Å). The disordered Xe–O/F bond lengths, however, are in good agreement with the weighted average of the Xe–O and Xe–F bond lengths obtained from the ordered α -[XeO₂F][SbF₆] phase. The structural unit and secondary coordination spheres of xenon in [XeO₂F][AsF₆] are also similar to those of α -[XeO₂F][SbF₆].

1.25.5.2.4.4 [FO₂XeFXeO₂F][AsF₆]

The [FO₂XeFXeO₂F][AsF₆] structural unit is comprised of wellseparated FO₂XeFXeO₂F⁺ cations and AsF₆⁻ anions (Figure 61).²⁷³ The FO₂XeFXeO₂F⁺ cation consists of two crystallographically independent XeO₂F units bridged by a fluorine atom to give a bent Xe---F---Xe arrangement. Each F---XeO₂F moiety approximates a disphenoidal AX₂Y₂E VSEPR arrangement of the electron lone-pair and four bondpair domains in the xenon valence shell with terminal Xe-F and Xe-O bond lengths of 1.872(3) and 1.870(4)Å, and 1.715(4) and 1.721(4)Å, respectively. The terminal Xe-F bond lengths are intermediate with respect to those of the XeO_2F^+ cation in α -[XeO_2F][SbF_6] and XeO_2F_2, corresponding to a charge decrease in xenon and increase in Xe-F bond polarity: $XeO_2F^+ > FO_2XeFXeO_2F^+ > XeO_2F_2$. The $FO_2XeFXeO_2F_2$. FXeO₂F⁺ cation is asymmetric about the bridging fluorine atom with Xe---F bond lengths of 2.161(3) (Xe(1)---F(8)) and 2.230(3) (Xe(2)---F(8))Å and has an average torsion angle, (O(1/2) - Xe(1) - Xe(2) - O(3/4), that is essentially 0°, resulting in a cation point symmetry of C_s . The xenon atom of each XeO₂F moiety has secondary fluorine bridge contacts from neighboring anions that approach their respective xenon centers, avoiding the xenon valence electron lone pair, that are trans to the equatorial oxygen atoms. The Xe---F---Xe bridge angle $(166.4(2)^{\circ})$ and bond lengths of FO₂XeFXeO₂F⁺ are very similar to those of $Xe_2F_{11}^+$ in its AuF₆⁻ salt (169.2(2)°; 2.21(1), 2.26(1)Å).²⁷⁶ However, in $[Xe_2F_{11}]_2[NiF_6]$ (140.3°; 2.35(1), 2.21(1)Å),²⁷⁷ the Xe---F---Xe angle is much smaller and is likely a consequence of stronger cation-anion

Figure 61 The structural unit in X-ray crystal structure of [FO₂XeFXeO₂F][AsF₆]. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. *Inorg. Chem.* **2006**, *45*, 1517–1534.

interactions that result from the higher negative charges on the fluorine ligands of the NiF₆²⁻ anion. The F(7)–Xe(1)---F(8) (169.7(2)°) and F(9)–Xe(2)---F(8) (170.8(2)°) bond angles of the F---XeO₂F moieties are bent toward the xenon lone pair and away from the equatorial Xe–O double-bond domains as in XeO₂F₂,²⁸⁸ TcO₂F₃. XeO₂F₂,²⁸⁹ and the O–XeO₂–O moiety of XeO₂(OTeF₅)₂.²³²

1.25.6 Xe(VIII) Compounds

1.25.6.1 NMR Studies of XeO₄ and [Na₄][XeO₆]

1.25.6.1.1 XeO4

Like XeO₃ and XeO₂ (see Section 1.25.4.1.2), XeO₄ is thermodynamically and kinetically unstable, decomposing explosively in the gas phase and in the solid state to Xe and O₂ with the release of 642 kJ mol⁻¹ of energy.²⁴⁶ The treacherous nature of XeO₄ has, no doubt, impeded progress in Xe(VIII) chemistry. Consequently, there had been no prior information relating to the solution behavior of XeO4. A modified and more detailed description of the original procedure²⁹¹ for the preparation of XeO₄ from Na₄XeO₆ and H₂SO₄ has been developed, along with a reliable procedure for forming its solutions which minimizes explosion risks.²⁹¹ Xenon tetroxide is soluble in the oxidatively resistant and synthetically useful solvents SO₂ClF, BrF₅, and aHF, giving solutions that are stable up to -30 °C. The work, which established protocols for safely creating synthetically useful XeO₄ solutions of sufficient stability, lays the groundwork for the solution chemistry of XeO₄ and for the extension of the presently limited chemistry of Xe(VIII). The ¹²⁹Xe, ¹³¹Xe, and ¹⁷O NMR spectra of XeO₄ were also recorded for the first time.²⁹¹

The ¹²⁹Xe chemical shifts of XeO₄ in SO₂ClF (-78.5 °C), BrF_5 (-50 °C), and HF (-75 °C) solutions relative to liquid XeOF₄ are -92.9, -94.7, and -85.8 ppm, respectively.²⁹¹ The chemical shift differences are small when compared with those of other xenon species, for example, XeF_2 (δ (¹²⁹Xe) = - 1905 ppm in SO₂ClF, 25 °C; -1592 ppm in HF, 25 °C),²⁹² indicating that the tetrahedral molecule, and xenon in particular, interacts only weakly with its solvent environment. The temperature dependence of the ¹²⁹Xe chemical shift of XeO₄ was studied in SO₂ClF solvent up to 0 °C where decomposition became rapid.²⁹¹ Only XeO₄ was observed by ¹²⁹Xe NMR spectroscopy in HF and BrF5 solutions, indicating that no fluorination or fluorine-oxygen exchange between XeO4 and HF and BrF5 had occurred, which is in agreement with the Raman spectroscopic characterization of XeO4 in HF solvent carried out in the same study,²⁹¹ but contrasts with the solvolytic behavior of the isoelectronic IO_4^- anion (eqns [72] and [73]).²⁹³

$$IO_4^- + 8HF \rightarrow IO_2F_4^- + 2H_3O^+ + 2HF_2^-$$
 [72]

$$IO_4^- + 2BrF_5 \rightarrow IO_2F_4^- + 2BrOF_3$$
 [73]

Besides ¹²⁹Xe, ¹³¹Xe is the only other naturally occurring xenon isotope (21.18%) which is NMR active. Although the natural abundance of ¹³¹Xe is similar to that of ¹²⁹Xe, the quadrupolar nature of ¹³¹Xe ($I=^{3}/_{2}$) provides a very efficient relaxation pathway by means of interaction of the quadrupole moment with an electric field gradient. Thus, there has been no reported ¹³¹Xe chemical shift for chemically bound xenon and

solution ¹³¹Xe NMR spectroscopy has been limited to studies of elemental xenon.²⁹⁴ The high symmetry of XeO₄ (T_d point symmetry) affords a sufficiently long relaxation time to allow the observation of surprisingly sharp ¹³¹Xe resonances and the first ¹³¹Xe NMR studies of a xenon compound. The ¹³¹Xe chemical shifts of XeO₄ in SO₂ClF (-78.5 °C), BrF₅ (-50 °C), and HF (-75 °C) solutions relative to liquid XeOF₄ are -92.8, -94.5, and -85.8 ppm, respectively. A variable temperature and variable field strength study of the spinlattice relaxation times for ¹²⁹Xe and ¹³¹Xe showed that the spin-rotation and the quadrupolar relaxation mechanisms, respectively, are dominant. A Raman spectroscopic study of XeO₄ in aHF solvent confirmed the point symmetry of XeO₄ and the absence of significant solvent–solute interactions.²⁹¹

The ¹⁷O NMR spectrum of natural abundance XeO₄ in SO₂ClF was recorded at -78 °C. The chemical shift was 509 ppm ($\Delta v_{1/2} = 46$ Hz) but no ¹*J*(¹²⁹Xe⁻¹⁷O) satellite coupling was observed because of the low satellite intensities and broadness of the ¹⁷O resonance which is partially a consequence of the quadrupolar nature of the ¹⁷O nucleus ($I=5/_2$; 0.037% natural abundance).

1.25.6.1.2 $[Na_4][XeO_6] \cdot xH_2O(x=0, 2)$

Another first in ¹³¹Xe NMR spectroscopy was achieved with the solid-state 131 Xe NMR studies of $[Na_4][XeO_6] \cdot xH_2O$ (x=0, 2).²⁹⁵ Xenon-129 and ¹³¹Xe were selected to characterize the xenon magnetic shielding and quadrupolar interactions for both sodium perxenate salts at an applied magnetic field strength of 11.75 T. Solid-state 129/131 Xe NMR line shapes indicate that the local Xe environment in anhydrous [Na₄] [XeO₆] adopts O_h symmetry and the Lorentzian ¹²⁹Xe NMR line shape suggests rapid reorientation of the XeO_6^{4-} anion in the solid state. Upon hydration, the XeO_6^{4-} anion becomes noticeably distorted from Oh symmetry. For stationary, anhydrous [Na₄][XeO₆], the heteronuclear ^{129/131}Xe, ²³Na dipolar interaction is the major contributor to the widths of the 129/131Xe NMR lines. For stationary and slow MAS of [Na₄][XeO₆]·2H₂O samples, the anisotropic Xe shielding interaction dominates the 129Xe NMR line shape, whereas the ¹³¹Xe NMR line shape is completely dominated by the nuclear quadrupolar interaction. Distortions from O_b symmetry for the local xenon environment in [Na₄][XeO₆] · 2H₂O have been detected by measuring the xenon magnetic shielding tensor. The xenon shielding tensor is nearly axially symmetric, with a skew of -0.7 ± 0.3 , an isotropic Xe chemical shift of -725.6 ± 1.0 ppm, and a span of 95 ± 5 ppm. The ¹³¹Xe quadrupolar coupling constant $(10.8 \pm 0.5 \text{ MHz})$ is large for a nucleus at a site of approximate O_b symmetry and the quadrupolar asymmetry parameter indicates a lack of axial symmetry. The study demonstrated the high sensitivity of the ¹³¹Xe nuclear quadrupolar interaction to changes in the local environment of xenon. This is a serious drawback in the study of chemically bound xenon species in the solid state, rendering acquisition of ¹³¹Xe NMR spectra for species having lowsymmetry xenon environments impractical. By contrast, solid-state ¹²⁹Xe NMR spectroscopic studies are considerably more promising in that both MAS and stationary samples can be studied with relative ease and in reasonable experimental time frames, and with no impractical restrictions on the external magnetic field strength.

1.25.7 Kr(II) Compounds

1.25.7.1 KrF₂ as a Ligand

Several KrF₂ adducts with transition metal centers have been previously reported^{296–299} and a structurally unsubstantiated Raman study proposed the formation of M[AuF₆]₂·*n*KrF₂ (M=Ca, Sr, Ba; n=0-4).³⁰⁰ However, only [BrOF₂[AsF₆]·2KrF₂ has been structurally characterized by X-ray crystallography.¹⁹⁷ The adduct was synthesized by the reaction of KrF₂ with [BrOF₂] [AsF₆] in a 2:1 molar ratio in aHF at -78 °C (eqn [74]).

$$[BrOF_2][AsF_6] + 2KrF_2 \xrightarrow{HF} {}_{12h \text{ at} - 78 \,^{\circ}\text{C}} [BrOF_2][AsF_6] \cdot 2KrF_2 \quad [74]$$

In contrast to $[BrOF_2][AsF_6] \cdot 2XeF_2$ (Section 1.25.3.2.3.8), ¹⁹⁶ the krypton analog was stable in aHF solution up to 25 °C for at least 1 h, showing no discernible decomposition as a solid or under aHF solvent over 5 days at -78 °C.¹⁹⁷

The X-ray crystal structure of $[BrOF_2][AsF_6]\cdot 2KrF_2$ (Figure 62) represents a rare example in which KrF₂ functions as a ligand¹⁹⁷ and is isostructural with the xenon analog,¹⁹⁶ with similar geometrical parameters (within $\pm 3\sigma$) for BrOF₂⁺ and AsF₆⁻. The KrF₂ molecules coordinate to the cation by means of Br---F(3) (2.318(4)Å) and Br---F(5) (2.356(4)Å) contacts. The Kr–F bridge bonds are elongated (1.943(4), 1.933(4)Å) and the terminal bonds are shortened by nearly equal amounts (1.840(5), 1.847(4)Å) relative to those of free KrF₂ (1.894(5)Å).¹²⁶ These distortions are significantly less than in KrF⁺ and Kr₂F₃⁺ salts (see Section 1.25.7.3), indicating that the Kr–F_b bonds of [BrOF₂][AsF₆]·2KrF₂ have considerably more covalent character than those of KrF⁺ and Kr₂F₃⁺ salts, and that the KrF₂ molecules behave as coordinating ligands rather than as fluoride ion donors.¹⁹⁷

The solid-state Raman spectrum of [BrOF₂][AsF₆]·2KrF₂ has been assigned with the aid of quantum-chemical calculations.¹⁹⁷ The Raman spectrum is similar to that of [BrOF₂][AsF₆]·2XeF₂ ¹⁹⁶ with the exception of more intense Kr–F stretching bands relative to their Xe–F counterparts in [BrOF₂][AsF₆]·2XeF₂. One notable difference that is apparent from quantum-chemical calculations is the weak vibrational

Figure 62 Structural unit in the X-ray crystal structure of [BrOF₂] [AsF₆]-2KrF₂; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. *J. Am. Chem. Soc.* **2010**, *132*, 3533–3542.

coupling that occurs between the $v(Kr-F_t)$ modes of the coordinated KrF_2 molecules in contrast with the strong coupling that occurs between the $v(Kr-F_b)$ bridging modes. The opposite behavior was found for $[BrOF_2][AsF_6] \cdot 2XeF_2$.¹⁹⁶

The QTAIM and ELF analyses were also carried out and indicated that $[BrOF_2][AsF_6]\cdot 2KrF_2$ is organized around $BrOF_2^+$ and its stabilization is due to its Coulomb interaction with the AsF_6^- anion and to electron delocalization and charge transfers involving the KrF_2 ligands.¹⁹⁷ A similar relationship between decreasing size of bromine electron lone pair and Br(V) coordination number also applies to $[BrOF_2][AsF_6]\cdot 2XeF_2$.

1.25.7.2 α-KrF₂

The crystal structure of the low-temperature phase, α -KrF₂ (Figure 63), 126 was determined in order to obtain more precise structural parameters for KrF2, which are important for comparison with other Kr-F bond lengths, and to establish the structural basis for the dimorphism of KrF₂. Krypton difluoride was originally studied by Raman spectroscopy, in conjunction with a factor-group analysis³⁰¹ which indicated that α -KrF₂ is isomorphous with the room temperature XeF₂ phase (tetragonal space group I4/mmm).¹³⁰ The crystal structure of β -KrF₂ $(P4_2/mnm)$ had been previously determined at $-80 \degree C.^{302}$ The more recent crystal structure determination of α-KrF₂ $(-125 \,^{\circ}\text{C})^{126}$ confirmed the dimorphism of KrF₂, the correctness of the earlier vibrational spectroscopic analysis, and the space group assignment based on the prior factor-group analysis.³⁰¹ The $\beta \rightarrow \alpha$ -phase transition had been shown by variable-temperature Raman spectroscopy to occur below this temperature.³⁰¹ The fact that crystals of β -KrF₂ were initially grown by sublimation at -78 °C and then cooled to -125 °C for X-ray data collection on the α-phase indicates that the $\beta \rightarrow \alpha$ -phase transition occurs without serious disruption of the crystal lattice. The Kr–F bond length in α -KrF₂ (1.894(5)Å) is of higher precision and in agreement with that determined for β -KrF₂ (1.89(2)Å, -80 °C) by X-ray diffraction³⁰² and for gaseous KrF₂ by electron diffraction (1.889(10)Å, -40 °C).³⁰³ As observed for β -KrF₂, α -KrF₂ is linear by symmetry. The interatomic F...F distance between collinearly orientated KrF₂ molecules is 2.71 Å in both phases.

1.25.7.3 Fluoride Ion Donor Properties of KrF₂, and KrF⁺ and Kr₂F₃⁺ Salt Formation

Krypton difluoride has been shown to exhibit fluoride ion donor properties that are analogous to those of XeF₂.^{87,121,124,132,299,304} The reactions of KrF₂ with strong fluoride ion acceptors have led to the formation of a number of KrF⁺ and Kr₂F₃⁺ salts, that is, [KrF][MF₆] (M = As, Sb, Bi, Au, Pt, Ta),^{125,305-309} [KrF][M₂F₁₁] (M=Sb, Ta, Nb),^{305,307-310} and [Kr₂F₃][MF₆] (M=As, Sb, Ta).³⁰⁵⁻³⁰⁹ All have been characterized by Raman spectroscopy. In related studies of [BrO₂F][AsF₆]·2NgF₂ (Ng=Kr,¹⁹⁷ Xe¹⁹⁶), KrF₂ was shown to be less fluorobasic than XeF₂. Unlike their Xe(II) analogs, the Kr(II) salts are thermodynamically unstable. However, the kinetic stabilities of the krypton salts show considerable variance,^{125,282,305-309} and salts, such as [KrF] [SbF₆],^{306,307,309} [KrF][Sb₂F₁₁],^{308–310} [Kr₂F₃][SbF₆],³⁰⁻³⁰⁹ and [KrF][AuF₆],²⁸¹ can be handled and stored at room temperature

Figure 63 Packing diagram of α -KrF₂ (-125 °C) viewed along the *a*-axis. Reproduced with permission from Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2001**, *40*, 3002–3017.

for appreciable amounts of time without significant decomposition. Structural characterization of KrF⁺ and Kr₂F₃⁺ salts in the solid state has, in large measure, relied upon Raman spectroscopy.^{125,281,305-309} The Raman spectra of KrF⁺ salts indicate that the KrF⁺ cation, like XeF⁺, has considerable Lewis acidity and strongly interacts with the anion by formation of a fluorine bridge between krypton and a fluorine ligand of the anion. Vibrational modes associated with the fluorine bridge and vibrational modes resulting from symmetry lowering of the octahedral anion have been assigned.^{125,281,308,309} The Raman spectra of Kr₂F₃⁺ salts have been assigned on the basis of a Vshaped fluorine-bridged geometry for the cation, 126,307,309 analogous to that established by X-ray crystallography for $Xe_{2}F_{3}^{+,140,141}$ In contrast with the KrF⁺ salts, Raman spectroscopy has shown that the cation–anion interactions in the $Kr_2F_3^+$ salts are weak, as indicated by retention of the octahedral symmetry of the anion. Fluorine-19 NMR spectroscopy has also been used to study the KrF^+ cation in aHF solvent and the $Kr_2F_3^+$ cation in BrF₅ solvent, providing the first unambiguous characterization of the structure of the fluorine-bridged Kr₂F₃⁺ cation.^{307,309} The strong oxidant characters of KrF₂, KrF⁺, and Kr₂F₃⁺ have not only provided low-temperature synthetic routes to BrF₆^{+, 307,311} ClF₆^{+, 311,312} OsO₂F₄^{, 313} AuF₅^{, 281} and TcOF₅^{, 314} but also served as a significant impediment to their detailed structural characterization by single-crystal X-ray diffraction.

Colorless, crystalline [KrF][MF₆] (M=As, Sb, Bi), [Kr₂F₃] $[SbF_6] \cdot KrF_2$, $[Kr_2F_3]_2 [SbF_6]_2 \cdot KrF_2$, and $[Kr_2F_3] [AsF_6] \cdot [KrF]$ [AsF₆] salts were synthesized by reaction of KrF₂ with MF₅ in 1:1, 1:1, 2:1, 3.5: 1, and 2:1 molar ratios, respectively, in aHF solvent and were crystallized between -10 and -80 °C to minimize decomposition.¹²⁶ The [KrF][MF₆] salts crystallized as discrete colorless needles while [Kr2F3][SbF6]·KrF2 and [Kr₂F₃]₂[SbF₆]₂·KrF₂ crystallized as intergrown pale yellow plates. The stoichiometric mixture, 2KrF₂:SbF₅, was found to decompose rapidly in aHF at temperatures as low as -40 °C, resulting in crystal growth of the less soluble [KrF][SbF₆] salt. The attempted crystallization of [Kr₂F₃][SbF₆] using excess KrF₂ to compensate for the decomposition resulted in a mixture of crystalline [KrF][SbF₆] and [Kr₂F₃]₂[SbF₆]₂·KrF₂ or [Kr₂F₃] [SbF₆]·KrF₂. Crystallization of [Kr₂F₃][AsF₆] was also unsuccessful, but resulted in the crystalline double salt, [Kr₂F₃] [AsF₆]·[KrF][AsF₆]. Samples of [KrF][AuF₆] were prepared as previously described²⁸¹ by the oxidation of gold powder by KrF₂ in aHF at 20 °C (eqn [75]), and pale yellow, needleshaped [KrF][AuF₆] crystals were obtained by slowly cooling an aHF solution from -10 to -80 °C.¹²⁷

$$Au + {7/_2}KrF_2 \rightarrow [KrF][AuF_6] + {5/_2}Kr$$
 [75]

Experimental trends in bond lengths and bond angles among $[NgF][MF_6]$ ion pairs and NgF_2 and $Ng_2F_3^+$ salts are, for the most part, analogous for krypton and xenon. For this reason, few explicit comparisons are mentioned. The sections that explicitly deal with XeF⁺ and Xe₂F₃⁺ salts should be consulted (see Sections 1.25.3.1.4.1 and 1.25.3.1.4.3).

1.25.7.3.1 [KrF][MF₆] (M=As, Sb, Bi, Au)

The β -[KrF][AsF₆], [KrF][SbF₆], and [KrF][BiF₆] salts form an isomorphous and isostructural series (Figure 64) in which the KrF⁺ cation strongly interacts with the anion by means of an asymmetric fluorine bridge that is bent at F_b, the fluorine bridge atom, which is more closely associated with the M atom of the hexafluoropnictate(V) anion.¹²⁶ The point group symmetries of the [KrF][MF₆] ion pairs are C₁ symmetry because the F_b---Kr-F_t groups are staggered, with F_e-M---F_b---Kr dihedral angles of 22.1°, 22.2°, 19.7°, and 28.1° for β -[KrF][AsF₆], [KrF][SbF₆], [KrF][BiF₆], and [Kr₂F₃][AsF₆]-[KrF][AsF₆], respectively. The geometry of the [KrF][AsF₆] ion pair in [Kr₂F₃]

[AsF₆]·[KrF][AsF₆] differs from that of β -[KrF][AsF₆] in that the dihedral F_e-M---F_b---Kr angle (28.1°) of the double salt is larger than that of β -[KrF][AsF₆] (22.1°), suggesting that the ion pair geometry is significantly influenced by the crystal packing. The Kr---F_b bond length is significantly shorter (2.106(6)Å) than in β -[KrF][AsF₆] (2.131(2)Å), whereas the Kr--F_t bond length (1.783 (6)Å) shows no significant change.

The Kr–F_t bond lengths (1.765(3)–1.774(6)Å) in these salts are significantly shorter and the Kr---Fb bridge bond lengths are significantly longer than the Kr-F bonds of α -KrF₂ (1.894(5)Å).¹²⁶ The bond length differences are also manifested in the Raman spectra by two bands, one shifted to high frequency, v(Kr-Ft) and the other shifted to low frequency, v(Kr-F_b), with respect to v_s (KrF₂) of α -KrF₂.¹²⁶ The MF_6^- octahedra are distorted and may be regarded, in a first approximation, as having local C_{4v} or lower symmetries that result from bridge bond formation with the cation, giving rise to elongated M---Fb bonds. There is no clear distinction between the $M-F_e$ and the $M-F_a$ bond lengths in these compounds. Despite the strong fluorine bridge interactions and variations in the fluoride ion acceptor strengths of AsF₅, SbF₅, and BiF5, the Kr-Ft bond lengths in all three salts and the Kr---F_b bond lengths in β -[KrF][AsF₆] (2.131(2)Å) and [KrF] $[SbF_6]$ (2.140(3)Å) exhibit no significant variation within $\pm 3\sigma$. The Kr---F_b bridge bond is, however, significantly shorter in the BiF_6^- salt (2.089(6)Å) than in the arsenic and antimony analogs, which is consistent with the weaker fluoride ion acceptor strength of BiF5 when compared with those of AsF5 and SbF5. The Kr---Fb bond lengths of all three salts are significantly less than the sum of the fluorine $(1.47 \text{ Å})^{34}$ and krypton $(2.02 \text{ Å})^{34}$ van der Waals radii and are indicative of significant covalent bond character that is also reflected in the nonlinearity of the Kr---F_b-M angles (vide infra).

In contrast with the [KrF][MF₆] (M=As, Sb, Bi) salts, which all crystallize in the $P2_1/c$ space group, the isostructural [KrF] [AuF₆] salt (Figure 65) crystallizes in the noncentrosymmetric space group, $Cc.^{127}$ Similar to the [KrF][MF₆] (M=As, Sb, Bi) series, [KrF][AuF₆] consists of a KrF⁺ cation that interacts strongly with the AuF₆⁻ anion by means of a fluorine bridge (F_b). The Kr-F_t terminal bond length in [KrF][AuF₆] (1.76(1)Å)¹²⁷ cannot be differentiated (within ±3 σ) from those of [KrF][MF₆] (M=As, Sb, Bi).¹²⁶ The Kr--F_b bridge bond length (2.16(1)Å) in [KrF][AuF₆] is similar to those

Figure 64 The structural units in the X-ray crystal structures of (a) [KrF][AsF₆], (b) [KrF][SbF₆], and (c) [KrF][BiF₆]. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2001**, *40*, 3002–3017.

reported for [KrF][AsF₆] and [KrF][SbF₆], but significantly longer than that of [KrF][BiF₆].¹²⁶ Comparison of these Kr---F_b bond lengths, which are all significantly shorter than the sum of the krypton and fluorine van der Waals radii (3.49 Å),³⁴ supports the high FIA of AuF₅, but cannot be used to reliably establish the relative fluoride ion acceptor strengths of AuF₅, SbF₅, and AsF₅.¹²⁷

Although a trans-effect resulting from the long Au---F_b bond (1.96(1)Å) may be expected to contract the Au-F(3) bond, this effect was not observed because the bond length uncertainties prevent discrimination among the nonbridging Au-F bonds (range, 1.89(1)–1.92(1)Å).¹²⁷ Failure to observe a trans-effect in [KrF][AuF₆] is not surprising because there is no significant contraction of the M-F bond trans to the M--F_b bond in the MF₆⁻ (M=As, Sb, Bi) analogs, where the bond length uncertainties are more precise.¹²⁶ The fluorine bridges in [KrF][MF₆] salts can be thought of in terms of a competition between the Lewis acids KrF⁺ and MF₅ for F_b (Structures I-III).

Thus, the ion pair has a significant amount of covalent character, which is reflected in the near-linear (AX_2E_3)

Figure 65 The structural unit in X-ray crystal structure of [KrF][AuF₆]. Thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Lehmann, J. F.; Schrobilgen, G. J. *J. Fluorine Chem.* **2003**, *119*, 109–124.

Ft-Kr---Fb and bent (AX2E2) Kr---Fb---M bond angles. The F(1)-Kr-F(2) bond angle of the $[KrF][AuF_6]$ ion pair $(175.4(7)^{\circ})$ deviates from the expected linear geometry which is consistent with the pnictogen analogs where this bond angle ranges from 176.8(1) (M=As) to $177.9(2)^{\circ}$ (M=Sb).¹²⁶ Of the [KrF][MF₆] species investigated by single-crystal X-ray diffraction, the [KrF][AuF₆] ion pair most closely resembles an eclipsed $C_{\rm s}$ conformation in which the F(4)-Au-F(2)-Kr torsion angle is 13.6°, compared to those of $[KrF][AsF_6]$ (22.1°), $[Kr_2F_3][AsF_6]$. [KrF][AsF₆] (28.1°), [KrF][SbF₆] (22.0°), and [KrF][BiF₆] (19.7°).¹²⁶ The variations in the Kr---F_b---M bond angles and torsion angles may have some anion dependence; however, these values are also likely to be influenced by long interionic contacts in the solid state as inferred from the differences observed between the ion pairs in [KrF][AsF₆] and [Kr₂F₃] $[AsF_6] \cdot [KrF] [AsF_6].$ ¹²⁶

1.25.7.3.2 [Kr₂F₃][SbF₆] · KrF₂, ([Kr₂F₃][SbF₆])₂ · KrF₂, [Kr₂F₃][AsF₆] · [KrF][AsF₆], and [Kr₂F₃][PF₆] · nKrF₂

The $Kr-F_t$ bond lengths of the $Kr_2F_3^+$ cations exhibit no crystallographically significant variation among the structures of ([Kr₂F₃] $[SbF_6]_2 \cdot KrF_2$ (Figure 66), $[Kr_2F_3][SbF_6] \cdot KrF_2$ (Figure 67), and $[Kr_2F_3][AsF_6] \cdot [KrF][AsF_6]$ (Figure 68), ranging from 1.780(7) to 1.805(5)Å with an average value of 1.796(9)Å.¹²⁶ The longer, more polar Kr---Fb bridge bonds are somewhat more sensitive to their environments, ranging from 2.027(5) to 2.065(4) Å with an average value of 2.048(14) Å. Long Kr...F interionic contacts are likely responsible for the variability of Kr---Fb bond lengths and Kr--- F_{b} ---Kr bond angles. Half of the Kr₂ F_{3}^{+} cations in ([Kr₂ F_{3}] [SbF₆])₂·KrF₂ are asymmetric and exhibit a small, but significant, bond length difference between $Kr(1)-F_b(3)$ (2.041(4)Å) and $Kr(2) - F_b(3)$ (2.065(4)Å). This is the first example of an asymmetric $Ng_2F_3^+$ (Ng = Kr, Xe) cation that has been documented crystallographically, although the possibility of an asymmetric Kr₂F₃⁺ cation in [Kr₂F₃][SbF₆] had been proposed based on Raman spectroscopic evidence.^{307–309} In all other cases, $Ng_2F_3^+$ cations had been described as symmetrical (C_{2v} point symmetry).

Figure 66 The structural unit in the X-ray crystal structure of ([Kr₂F₃][SbF₆])₂· KrF₂; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2001**, *40*, 3002–3017.

Figure 67 The structural unit in the X-ray crystal structure of [Kr₂F₃][SbF₆]·KrF₂; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* 2001, *40*, 3002–3017.

Figure 68 The structural unit in the X-ray crystal structure of $[Kr_2F_3][AsF_6]$. [KrF][AsF₆]; thermal ellipsoids are shown at the 50% probability level. Reproduced with permission from Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* **2001**, *40*, 3002–3017.

The F_t -Kr--- F_b bond angles of the $Kr_2F_3^+$ cation structures investigated exhibit small, but significant, distortions from the expected linear AX_2E_3 VSEPR arrangements, ranging from 177.8(2) to 178.7(2)° in $[[Kr_2F_3]][SbF_6])_2$ ·Kr F_2 , 175.1(2) to 176.8(2)° in $[Kr_2F_3][SbF_6]$ ·Kr F_2 and 178.2(3) to 178.6(3)° in $[Kr_2F_3][AsF_6]$ ·[Kr $F][AsF_6]$. The most significant bond angle variations occur for the Kr--- F_b ---Kr bridge, which is 126.0(2) to 128.0(2)° in $([Kr_2F_3][SbF_6])_2$ ·Kr F_2 , 127.5(3)° in $[Kr_2F_3][AsF_6]$ ·[Kr $F][AsF_6]$, with the largest occurring in $[Kr_2F_3][SbF_6]$ ·Kr F_2 (142.5(3)°). The variability of the Kr--- F_b ---Kr bond angles can be attributed to long interionic/intermolecular Kr---F contacts¹²⁶ and to the effects

of crystal packing on these highly deformable angles. Small F_t -Kr-- F_b angle distortions result in W-shaped $Kr_2F_3^+$ cations in these salts. Although these angle distortions may also be attributed to secondary Kr--F contacts and crystal packing, they persist in the calculated gas-phase energy-minimized geometry.¹²⁶ The X-ray crystal structures and energy-minimized structures derived from theory for the $Xe_2F_3^+$ cation¹⁴⁰ also show that $Xe_2F_3^+$ is W-shaped. The F_t -Xe--- F_b angles are distorted from linearity by similar amounts (expt., 2.4(3)° [As] and 1.4(4)° [Sb]; theor., 2.3°) when compared with those of $Kr_2F_3^+$ (expt., 3.2(1)–2.1(2)°; theor., 2.6°).

Unlike the KrF₂ molecules in α -KrF₂ and β -KrF₂, which are linear by symmetry, the KrF₂ molecules in [Kr₂F₃][SbF₆]·KrF₂ and {[Kr₂F₃][SbF₆]}₂·KrF₂ are slightly bent (178.0(2) and 179.1 (2)°) with Kr–F bond lengths of 1.868(4), 1.888(4)Å, 1.881(4), and 1.887(4)Å, respectively.¹²⁶ The X-ray structure determinations of [Kr₂F₃]₂[SbF₆]₂·KrF₂ and [Kr₂F₃][SbF₆]·KrF₂ confirm earlier Raman spectroscopic studies of the KrF₂/SbF₅ and KrF₂/ AsF₅ systems in which an undetermined excess of KrF₂ was found to associate with [Kr₂F₃][SbF₆] and [Kr₂F₃][AsF₆].³⁰⁷⁻³⁰⁹ The symmetric KrF₂ stretch of associated KrF₂ was shifted by ~10 cm⁻¹ to high frequency of that of free KrF₂.

1.25.7.4 KrF₂ and the Synthesis of TcOF₅

The last member of the series of technetium(VII) oxide fluorides, TcOF₅, has been prepared from TcO₂F₃ by taking advantage of the strong oxidative fluorination properties of KrF₂.³¹⁴ Technetium dioxide trifluoride, TcO₂F₃, was previously synthesized for the first time by reaction of XeF₆ with TcO₃F in aHF solvent³¹⁵ (eqn [76]).

$$XeF_{6} + TcO_{3}F \xrightarrow[RT]{aHF} TcO_{2}F_{3} + XeOF_{4}$$
[76]

No evidence was found for the fluorination of TcO_2F_3 to $TcOF_5$ when a stoichiometric excess of XeF₆ was used. Instead, excess XeF₆ present in these systems acts as a fluoride ion donor, solubilizing TcO_2F_3 to form [XeF₅][TcO_2F_4].³¹⁵ In an attempt to produce a stronger fluorinating medium, TcO_2F_3 was dissolved in an eightfold molar excess of molten XeF₆ at 35 °C, forming a yellow solution which gave no indication of $TcOF_5$ formation after 5 h.³¹⁴ Upon fractionation, the components were examined by Raman spectroscopy; the volatile fraction was shown to be [Xe₂F₁][TcO_2F_4] (eqn [77]).

$$TcO_2F_3 + 2XeF_6 \xrightarrow{XeF_6, 35 \circ C} [Xe_2F_{11}][TcO_2F_4]$$
[77]

Krypton difluoride has been shown to be a sufficiently strong fluorinating agent to fluorinate TcO_2F_3 to $TcOF_5$ in aHF. A tenfold molar excess of KrF₂ was initially used because of the competing decomposition of the KrF₂ to Kr and F₂ at room temperature over the 48-h period required for complete reaction (eqn [78]):³¹⁴

$$\Gamma cO_2F_3 + KrF_2 \xrightarrow{\text{HF}} TcOF_5 + Kr + \frac{1}{2}O_2$$
[78]

The unfavorable kinetics likely result from the strong Tc–O double bonds of TcO_2F_3 and its insolubility in aHF. The reaction was repeated using the HF-soluble [Cs][TcO_2F_4] salt with the view that the negative charge of $TcO_2F_4^-$ would render the Tc–O bonds more polar and the oxygen more susceptible to electrophilic attack and oxidation by KrF₂ (eqn [79].

$$[Cs][TcO_2F_4] + KrF_2 + xHF \xrightarrow{HF} TCOF_5 + Kr + \frac{1}{2}O_2 + [Cs][(HF)_xF]$$

$$[79]$$

However, the reaction rate did not increase significantly. Periodic sonication of a mixture of TcO_2F_3 and a fivefold molar excess of KrF_2 in aHF at room temperature for 24 h followed by solvent removal under vacuum at -78 °C proved to be the most efficient method for the synthesis of $TcOF_5$.

Technetium oxide pentafluoride is a volatile orange solid that melts reversibly and without decomposition at 57–58 °C and is deep red–orange in color in the liquid state. When maintained under anhydrous conditions, the solid is stable for at least 2 weeks at room temperature and is stable indefinitely when stored at -78 °C. The pseudo-octahedral (C_{4v}) structure of TcOF₅ has been determined by ¹⁹F and ⁹⁹Tc NMR spectroscopy, Raman and IR spectroscopies, and by single-crystal X-ray diffraction.

1.25.8 Thermochemistries of Known and Unknown lonic Noble-Gas Compounds

Studies of the thermochemistries of noble-gas compounds have been limited by the general paucity of available thermochemical data. For this reason, the VBT approach^{174,316-319} has been used to confirm and predict the stabilities of a variety of known and unknown noble-gas salts.⁹³ The VBT approach provides a link between structural (crystal) features, through volume and lattice energy, and the corresponding thermochemistry of the crystalline material. In the few situations where thermochemical facts are known, VBT tends to validate and confirm these, giving some confidence that the predicted results should provide a guide to thermodynamic possibilities.

The VBT lattice energies, U_{POT} , enthalpies of formation, $\Delta H_{\rm f}^{\rm o}$, VBT standard entropies, $S_{298}^{\rm o}$, standard entropies of formation, ΔS_{f}^{o} , and Gibbs free energies of formation, ΔG_{f}^{o} , for XeF⁺, XeF₃⁺, XeOF₃⁺, XeF₅⁺, Xe₂⁺, Xe₂F₃⁺, Xe₂F₁₁⁺, $FXeOS(F)OXeF^+$, $XeN(SO_2F_2)_2^+$, $XeOSeF_5^+$, $XeOTeF_5^+$, XeCl⁺, KrF⁺, and Kr₂F₃⁺ salts, as well as for hypothetical ArF^+ salts have been determined.⁹³ The stabilities of $[XeF_n]$ $[Sb_2F_{11}]$ (n=2, 3) and $[XeF][AsF_6]$ were confirmed with respect to dissociation to the xenon fluoride and pnictogen pentafluoride, whereas the stabilities of [XeF₃][AsF₆] and [XeF₃][As₂F₁₁] were shown to be marginal under standard conditions. The VBT method confirmed that the known XeF⁺ salts are thermodynamically stable with respect to redox decomposition and that KrF⁺ salts and all (hypothetical) ArF⁺ salts (MF₆⁻, M=P, As, Sb, Au, and $Sb_2F_{11}^{-}$) considered are unstable with respect to redox decomposition to Ng(g), $F_2(g)$, and MF₅(g) (Ng = Ar, Kr).

1.25.9 Noble-Gas Molecules Characterized by Mass Spectrometry and Matrix Isolation

Noble-gas containing molecules that lie at the fringes of stability and have been formed/characterized by use of matrix isolation, laser ablation, and mass spectrometric techniques have attracted considerable attention since 1994 when Ar was shown to interact with BeO in a solid Ar matrix.³²⁰ While these molecules have been formed, spectroscopically characterized, and modeled computationally using ab initio methods (DFT methods were not always reliable),³²¹ they have not been synthesized in bulk amounts and cannot be used as synthetic precursors for further chemistry; however, in a number of cases, it may be possible to isolate macroscopic quantities by other means. Over the past decade, a significant body of work has been carried out in this area to warrant two reviews summarizing experimental and computational findings relating to the HNgY family of molecules (Ng=Ar, Kr, Xe; Y=electronegative fragments).^{322,323} In general, matrixisolated species are formed by photolysis of a precursor having the general formula HY in a solid noble-gas matrix at approximately 10–30 K followed by annealing between 30 and 40 K with temperatures depending on the noble-gas matrix used and the stability of the product.

1.25.9.1 Matrix-Isolated Noble Gases Bonded to Non-metals

The argon-containing molecule, HArF, was formed by the photolysis of HF in a solid argon matrix below 27 K and was identified by IR spectroscopy and by isotopic substitution using HF/40Ar, HF/36Ar, and DF/40Ar matrices.324 Three bands appeared at 1969.5, 687.0, and 435.7 cm^{-1} in the HF/⁴⁰Ar spectrum, while two bands in the DF/⁴⁰Ar spectrum were shifted to lower frequency: 1466.3 (H-Ar stretch), 513.0 (bending), and 435.3 cm⁻¹ (Ar–F stretch). When HF/³⁶Ar was used, the three IR absorptions were shifted to higher frequencies (2, 2, and 7 cm⁻¹, respectively) relative to their values in HF/40Ar matrices. The vibrational assignments and energyminimized geometries of these isotopomeric molecules were calculated using ab initio methods.³²⁴ A second, more stable form of HArF was obtained by preparing samples as described above and annealing them at 30 K. The new solid-state configuration of HArF showed bands at 2020.8 and 697.0 cm⁻¹.³²⁵ The effects of the precursor concentration, deuteration, IR radiation, and deposition temperature as well as thermal activation of this reaction were also studied experimentally,³²⁶ while the bonding in gas-phase HArF was studied computationally.³²⁷ The two forms of HArF have been referred to as 'unstable' and 'stable' forms, respectively, and their interconversions were investigated experimentally and computationally.³²⁸ Two conversion mechanisms were proposed. One involved the local mobility of a neighboring vacancy. The second involved formation of stable HArF by rotation of the trapped molecule inside the matrix cavity without vacancy assistance. The latter pathway was energetically improbable at the experimental temperatures that were used.

The method used for generating HArF was also applied to form HKrF. The fundamental vibrations were observed by IR spectroscopy at ~1950 cm⁻¹ (H–Kr stretch), ~650 cm⁻¹ (bending), and ~415 cm⁻¹ (Kr–F stretch).³²⁹ Two distinct sites were observed for HKrF with a significant (~26 cm⁻¹) energy difference between the H–Kr stretching vibrations of HKrF in the two sites.

A variety of noble-gas species bonded to the halogens have been formed in low-temperature Ng matrices having the general formula, ^{1/2}HNgY (Ng=Xe, Y=Cl, Br, I; Ng=Kr, Y=Cl).³³⁰ An interesting property of HXeI is its ability to orientate in a weak static electric field allowing for its detection in the gas phase by time-of-flight mass spectrometry.³³¹ Matrixisolated ^{1/2}HNgY was characterized by IR spectroscopy and by quantum-chemical calculations. Of the three bands that are predicted for linear HNgY molecules, only the intense Ng–^{1/2}H stretch was observed, in most cases, in the IR spectrum and was used to identify ^{1/2}HNgY.³³⁰ The Ng–^{1/2}H stretch decreased across the halogen series for Xe [Cl: 1648 cm⁻¹ (¹H), 1198 (²H); Br: 1504 cm⁻¹ (¹H), 1100 cm⁻¹ (²H); I: 1193 cm⁻¹ (¹H), 893 cm⁻¹ (²H)] and also decreased from ^{1/2}HXeCl [1648 cm⁻¹ (¹H), 1198 cm⁻¹ (²H)] to ^{1/2}HKrCl [1476 cm⁻¹ (¹H), 1106 cm⁻¹ (²H)].

The HNgY molecules generally exhibited closely spaced sets of bands in the H-Ng stretching region. The most intense band was attributed to matrix sites where embedded HNgY molecules interacted with noble-gas matrix atoms, whereas the weaker band was attributed to hindered rotation of the embedded molecules in the lattice with the latter band shifting to higher frequency.³³² In an effort to better understand the site geometries, annealing behaviors, and band splittings observed in the IR spectra, several of the new noble-gas compounds characterized in matrix environments were studied computationally and the findings were in good agreement with the experimental results.³³³ Comparison with the experimental findings indicated that the matrix shifts were considerably greater than typically found for neutral strongly bonded molecules and that the effects of the matrix site for HXeCl and HXeI, which are more restrictive, are significantly different from the matrix sites of HArF and HKrF, where there is more space around the F atoms.

UV-absorption spectroscopy of HXeY (Y = Cl, Br, I, CN) in a solid xenon matrix at 12 K in conjunction with multireference configuration interaction (MRCI) calculations indicated the single absorption band observed for each species resulted from A ${}^{1}\Sigma \leftarrow X {}^{1}\Sigma$ transitions.³³⁴ In addition, the absorption bandwidth was indicative of a transition from a bound ground state to a repulsive excited state.

Although it has not been possible to examine the subsequent chemistry and reactivities of these matrix-isolated molecules, N_2 complexes with HArF,³³⁵ HKrCl,³³⁵ HKrCl,³³⁵ HXeCl,³³⁶ and HXeBr³³⁶ have been formed by introducing small amounts (0–1:500, N_2 :Ng) of nitrogen into the noble-gas matrix prior to photolysis. Two complex configurations were observed where N_2 coordinated linearly to the H atom (Figure 69, Structure 1) and where N_2 coordinated in a bent fashion to the Ng atom (Figure 69, Structure 2) of HArF, HKrF, and HKrCl.³³⁵ Electrostatic forces are the dominant interaction in the linear complex and electrostatic and dispersion forces are almost equally dominant for the bent complexes. Complexation also resulted in exceptionally large high-frequency shifts, especially for the linearly coordinated structures (>100 cm⁻¹ for v(H-Kr) of HKrF).

Figure 69 The proposed coordination geometries for $HNgY \cdots N_2$ and $HNgY \cdots Ng$. Reproduced in modified form from Khriachtchev, L.; Tapio, S.; Räsänen, M.; Domanskaya, A.; Lignell, A. *J. Chem. Phys.* **2010**, *133*, 084309/1–084309/13.

By contrast, the complexation shifts of HXeCl and HXeBr were much smaller ($\sim 10 \text{ cm}^{-1}$), ruling out the possibility of a linearly coordinated nitrogen molecule, suggesting both molecules are bent and exist in one of two configurations (Figure 69, Structures 2 and 3).³³⁶

A number of matrix-isolated molecules having the general formula ^{1/2}HNgY (Ng=Xe, Y=CN, NC, NCO, O^{1/2}H, S^{1/2}H, ^{1/2}H; Ng=Kr, Y=CN) have been identified on the basis of their v(H–Ng) stretching bands by IR spectroscopy. The v(H–Ng) bands occurred at highest frequency for the nitrogen-bound ligands, –NC and –NCO, and at lowest frequency for the –S^{1/2}H and –^{1/2}H ligands.³³⁰ The HNgCN, HNgNC (Ng=Kr, Xe), HXeSH, and HXeOH molecules were also investigated by topological analyses of their ELFs, which models the bonding and delocalization of electron density. In all cases, the calculations revealed that the species are best described as charge-transfer systems.³³⁷

Ultra-violet photolysis of H_2S , HI, and H_2CO in solid xenon has led to the formation and characterization of HXeSH, HXeI, and HXeH.³³⁸ The absorption maxima of HXeSH and HXeH are near 290 and 230 nm, respectively, whereas HXeI has two maxima at 310 and 410 nm.

The identification of HXeOXeH, which seems to be the smallest known neutral matrix-isolated molecule with two noble-gas atoms, was confirmed by IR spectroscopy and was supported by quantum-chemical calculations.³³⁹ Preliminary evidence for the fluorine analog, FXeOXeF, has also been reported (see Section 1.25.3.2.2). The HXeOXeH molecule was formed by UV photolysis of water in a xenon matrix and subsequent annealing at 40-45 K. The HXeOXeH molecule was formed by the reaction, HXeO + Xe + H, where the HXeO· radical (see Section 1.25.9.1.1) is an intermediate precursor formed by H+Xe+O. It has been suggested that HXeOXeH may represent a first step toward the possible formation of $(Xe-O)_n$ chains and that it may be relevant to depletion of xenon from the Earth's atmosphere.^{252,254-256} The kinetic stabilities of HXeOH and HXeOXeH have also been studied computationally and have intrinsic half-lives of 1 h at 170 and 120 K, respectively.340

Interest in the aforementioned matrix-isolated molecules has prompted numerous computational studies including an examination of HNgF (Ng=He, Ar, Kr) hyperpolarizabilities,³⁴¹ suppression of the decomposition of HNgY to HY and Ng,³⁴² and reexamination of the HXeY (Y=F, Cl, Br, I, CCH, CN, NC)³⁴³ and HNgF (Ng=Ar-Rn)³⁴⁴ families of molecules. Other studies have probed interactions of HArF or HKrF with CO³⁴⁵ and of BO⁺ with He³⁴⁶ and have postulated the possible formation of other noble-gas species including HArCl,³⁴⁷ HNgNgF (Ng=Ar-Xe),^{348,349} HNgFNgH⁺ (Ng=He-Xe),³⁵⁰ XeI,³⁵¹ XeI⁺,³⁵¹ XeI⁻,³⁵¹ NgH⁺ (Ng=He-Xe),³⁵³

With the existence of the aforementioned molecules/ions, it is not surprising that xenon incorporation into unsaturated hydrocarbons, including acetylene, benzene, and phenol, has also been considered. Calculations showed these compounds to be stable³⁵⁴ and the predictions were confirmed when HXeCCH,^{355–357} HXeCCXeH,³⁵⁵ and HXeCC³⁵⁵ were formed by photolysis of HC=CH in a xenon matrix. Alternatively, HXeCCH has been formed by irradiation of HC=CH with fast electrons (~1 MeV) in a xenon matrix.³⁵⁶ Three IR bands were

observed for HXeCCH.³⁵⁵ The H-C stretching and HCC bending modes were assigned to bands at 3273 and 626 cm⁻¹, respectively, with a band at 1486 cm⁻¹ assigned to the H-Xe stretching mode. Two stretching bands were observed for HXeCC, with the H-Xe stretch assigned at 1478 cm⁻¹ and the C=C stretch assigned at 1748 cm⁻¹. Only a single band at 1301 cm⁻¹, assigned to the H-Xe stretch, was observed for HXeCCXeH. In addition to the more polarizable Xe matrix, Ar and Kr matrices were used to form HXeCCH where the H-Xe stretching bands are shifted to higher frequency (44.9 and 32.3 cm⁻¹, respectively) with respect to the values measured in a Xe matrix.³⁵⁷ The assignments of the HXeCCH and HXeCC spectra, as well as that of HXeH, were confirmed by ¹²⁹Xe and ¹³⁶Xe enrichment studies.³⁵⁸ Although the isotopic shifts for the H-Xe stretching absorptions were small $(0.17-0.38 \text{ cm}^{-1})$, they were reproducible and are in agreement with those predicted by quantumchemical calculations. The ¹²⁹Xe and ¹³⁶Xe spectra of HXeH were also calculated.

The photolysis of propriolic acid (HCCCOOH) in a xenon matrix was shown to form HXeCCH and CO_2 , which, in turn, interacted to form a complex (Figure 70).³⁵⁹ Coordination of CO_2 to HXeCCH resulted in two H–Xe stretching bands which are shifted to higher frequency relative to HXeCCH monomer by 5.8 and 31.9 cm⁻¹. Of the three stable models for the complex (Figure 70), it was proposed that the band which shifted by 5.8 cm⁻¹ is the parallel structure and that the band shifted by 31.9 cm⁻¹ is the same structure in another matrix site or the linear structure.

The krypton analog, HKrCCH, was also formed in a krypton matrix in a manner analogous to the formation of HXeCCH.³⁶⁰ The formation of HArCCH was, however, unsuccessful using the analogous method. The H–Kr stretching absorption appears as closely spaced bands at 1241.5, 1249.5, and 1257 cm⁻¹ which are attributed to different matrix sites. The H–C stretching and C–C–H bending modes were observed at 3290 and 608/610 cm⁻¹, respectively. All three vibrational frequencies are shifted to lower frequency than in the xenon analog, in accordance with the calculated frequencies.

Figure 70 The proposed geometries for the complex formed by HXeCCH and CO₂ in a xenon matrix. Reproduced with permission from Tanskanen, H.; Johansson, S.; Lignell, A.; Khriachtchev, L.; Räsänen, M. *J. Chem. Phys.* **2007**, *127*, 154313/1–154313/7.

In a related computational study, it was shown that the same experimental approach could plausibly be extended to yield radon species, HRnCCH and HRnOH,³⁶¹ the disubstituted compounds HCCNgCCH (Ng=Kr, Xe),³⁶² and the tetra- and hexa-substituted compounds, Ng(CCH)₄ and Ng(CCH)₆ (Ng=Kr, Xe),³⁶³ which are predicted to be stable in the gas phase.

The fluorine analogs, HNgCCF and HCCNgF (Ng=Kr, Xe), were also observed when HCCF was photolyzed in xenon or krypton matrices.³⁶⁴ The HNgCCF molecules displayed greater stabilities than the corresponding HNgCCH compounds. However, no conclusive evidence for the existence of the Ar analog was obtained. The possibility of forming the related hydrogen-free molecules, XNgCCX and XNgCCNgX (Ng=Kr, Ar; X=F, Cl), has also been investigated computationally, showing them to be stable.³⁶⁵

The formation of noble-gas hydrides having longer carbon chains was successful when diacetylene was photolyzed at 193–250 nm in krypton and xenon matrices and followed by annealing.³⁶⁶ The HNgC₄H (Ng=Kr, Xe) molecules are the highest molecular weight noble-gas hydrides presently known and are predicted to be more stable than their lighter HNgC₂H analogs³⁶⁶ which have led to the prediction that the argon analog, HArC₄H, may also be formed under matrix-isolation conditions.³⁶⁷ It has also been suggested that the larger, as yet unknown, HNgC₆H and HNgC₈H molecules might be good candidates for bulk syntheses.³⁶⁶

1.25.9.1.1 The XeF₃ and HXeO Radicals

Matrix isolation has also provided the discovery of the Xe(IV) radical, ·XeF₃, which possesses a T-shaped geometry.²¹⁸ The XeF_3^+ cation also has a T-shaped geometry that results from a trigonal bipyramidal AX3E2 VSEPR arrangement with the equatorial plane occupied by a fluorine atom and two lone electron pairs and the axial positions occupied by two fluorine atoms. The trans-axial fluorine atoms are bent toward the equatorial fluorine atom. This contrasts with XeF3. where the axial fluorine atoms are bent away from the equatorial fluorine atom, implying that two lone electron pairs occupy positions trans to one another and 90° from the trans-axial fluorine atoms and that the lone electron is positioned trans to the equatorial fluorine atom. Dilute mixtures (1:2:3000) of XeF₂ and F₂ in an Ar matrix were photolyzed at 12 K using 337 nm radiation followed by annealing at 20 K. The ·XeF3 radical was stable up to 27 K and revealed a new, intense IR band at 568 cm⁻¹ and a very weak band at 523 cm⁻¹ assigned to the asymmetric and symmetric XeF2 stretching modes of the trans-axial Xe-F bonds, respectively. The Xe-F stretch of the equatorial Xe-F bond was not observed.

The HXeO· radical was observed as an intermediate during the annealing process leading to HXeOH formation.³⁶⁸ When annealing was carried out at 35 K, significant amounts of the radical were indicated by the appearance of the v(H–Xe) band at 1466.1 cm⁻¹ (1070.3 cm⁻¹ for ²H-enriched samples). Upon annealing at 45 K, this band decreased in intensity with the appearance of a band at 1578 cm⁻¹ assigned to v(H–Xe) of HXeOH. The potential energy surface and vibrational energy levels of HXeO· have also been calculated and show that a three-body dissociation channel is the dominant dissociation channel for HXeO·.³⁶⁹

1.25.9.2 Coordination of Noble Gases to Transition Metal Oxides

Laser ablation of an uranium target produces uranium atoms that, when co-condensed with carbon monoxide, argon, and xenon, yield CUO(Ar)_{4-n}(Xe)_n (n=1-4).^{370,371} Four noblegas atoms are coordinated to uranium, representing the first neutral compound involving four noble-gas atoms around a single metal center. This chemistry has been extended to krypton, resulting in species of the type $CUO(Ar)_{4-n}(Kr)_n$.^{371,372} In solid argon, triplet states are formed for the different compounds but linear, singlet states are formed in neon. When uranium atoms were isolated in inert and CO-doped matrices using dilute Ar, Kr, or Xe in an excess of neon, CUO(Ar), CUO (Kr), and CUO(Xe) were identified which also contained neon atoms in the uranium coordination sphere.³⁷³ A singlet ground state was observed for CUO(Ne)_x(Ng)_y complexes for y=0-2, and a triplet spin state was observed for y = 3, 4, or when neon was absent.

Laser ablation of uranium in the presence of O₂ resulted in UO₂, which was co-condensed with argon.³⁷⁴ The electronic ground state of UO2 in solid argon was determined by near-UV spectroscopy. It was anticipated that, as for CUO (see above), the presence of argon atoms may result in reordering of the low-lying electronic states of UO2. While the results did not support this interpretation, it was concluded that UO₂ exhibits 'unusually strong interactions with argon.' Coupled-cluster and DFT calculations suggested that the most likely complex observed under the conditions described above was $UO_2(Ar_5)$.³⁷⁵ Additionally, the very large difference in vibrational frequencies observed on changing the matrix from argon to neon suggested that a reordering of the electronic states had occurred. A related study indicated a significantly stronger interaction between the uranium atom and the noble-gas atom for UO2⁺ than between the uranium atom and the noble-gas for neutral UO2.376

Laser ablation of various metal oxides (Cr₂O₃, MnO₂, Fe₂O₃, Co₂O₃, and Ni₂O₃) in noble-gas (Ar, Kr, and Xe) matrices resulted in the 1:1 complexes, NgMO (Ng=Ar, Kr, Xe).³⁷⁷ When Sc₂O₃ or Y₂O₃ was used, computational studies indicated that the transition metal monoxide cations, ScO⁺ and YO⁺, coordinate five and six noble-gas atoms, respectively, to form $[ScO(Ng)_5]^+$ $(Ng=Ar, Kr, Xe)^{378}$ and $[YO(Ng)_6]^+$ (Ng=Ar, Kr).³⁷⁹ When mixed noble-gas matrices were used, the new species $[ScO(Ar)_{5-n}(Kr)_n]^+$, $[ScO(Kr)_{5-n}(Xe)_n]^+$ (n=1-5), $[YO(Ar)_{6-n}(Kr)_n]^+$ (n=1-6), and $[YO(Ar)_{6-n}(Xe)_n]^+$ (n=1-4) were formed.^{378,379} The VO₂ and VO₄ species were formed by analogous procedures and coordinated two Ar or Xe atoms and one Ar or Xe atom, respectively.³⁸⁰ The binding of Be₂O₂ to noble-gas atoms and the stabilities of the resulting complexes were also studied computationally and indicated that Be₂O₂ can bind two noble-gas atoms, with the calculated binding energy increasing from He to Xe.381

Xenon compounds of gold have been characterized by Xray crystallography (see Section 1.25.2.2); so it is not surprising that the matrix isolation of noble-gas species of the coinage metals has been undertaken. Laser ablation of a gold surface in gaseous chlorine and noble-gas mixtures resulted in ArAuCl and KrAuCl in the gas phase, which were characterized by microwave rotational spectroscopy.⁵³ Laser-ablated gold and silver have been reacted with SF₆ or Br₂ in the presence of krypton to give KrAuF, KrAgF, and KrAgBr.³⁸² Using similar methodology, XeAuF was produced from laser-ablated gold, SF_{64} and xenon.³⁸³ Microwave rotational spectroscopy of the krypton complexes showed that they are linear, rigid, and possess relatively short krypton-metal bonds $[r_o(Kr-Au) =$ 2.463253(15)Å, $r_o(Kr-Ag) = 2.6681(39)$ Å]. The ⁸³Kr and ¹⁹⁷Au nuclear quadrupole coupling constants allowed the electronic distribution to be obtained, and suggested that weak chemical bonding existed, especially for NgAuF.³⁸² The XeAuF complex was also shown to be linear and to possess an Au-Xe bond length of 2.54 Å.383 The analogous copper complexes have also been investigated and evidence has been found for both KrCuF and KrCuCl as weakly bound molecules.³⁸⁴ The complexes lie at the limit between van der Waals interactions and weak covalent bonds (Kr-Cu bond lengths: KrCuF, 2.32 Å; KrCuCl, 2.36 Å). By contrast, XeCuF and XeCuCl possess rather short Xe-Cu bonds (2.43 and 2.47 Å, respectively).³⁸⁵ A number of computational papers have also examined coinage metal complexes³⁸⁶⁻³⁹⁰ and have postulated the existence of HePtF.³⁹

Laser ablated metals such as Ti, V, Nb, and Ta react with O_2 and xenon mixtures in argon matrices to form XeOO⁺ which was characterized by ¹⁸O-isotopic enrichment, using IR spectroscopy, and by ab initio and DFT calculations.³⁹²

1.25.9.3 Noble-Gas Species Observed by Mass Spectrometry

Noble-gas species that form in the gas phase may suggest molecules or ions that are likely to be stable in electron-poor environments such as those encountered in noble-gas matrices and superacid media.

Although HXeCCH has been characterized in the solid state by matrix isolation (see Section 1.25.9.1), its observation in a time-of-flight mass spectrometer was achieved by photolysis of acetylene in the presence of Xe_n (n=390) clusters.³⁹³ Other new noble-gas species, including HCCNg²⁺ (Ng=Ar, Kr), have also been observed by mass spectrometry.³⁹⁴ Hyperthermal collisions of neutral argon and krypton gases with mass-selected acetylene dications yielded organo-noble-gas dications. Although the yields were low, the use of multiply charged ions as reagents may prove successful for the formation of other noble-gas compounds that have been predicted by theory.

The reaction of argon with mass-selected CH₃Br^{2+/} CH₂BrH²⁺ dications led to a noble-gas carbene cation, ArCH₂+,³⁹⁵ while reaction of argon with the CF₃²⁺ dication yielded ArCF₂²⁺.³⁹⁶ An analogous procedure was used in which argon was allowed to react with the superelectrophilic SiF₃²⁺ dication, produced by dissociative double ionization of SiF₄, to form the ArSiF₂²⁺ dication and, presumably, a fluorine atom as the major products.³⁹⁷ The calculated Ar–Si bond is relatively strong (2.78 eV) and covalent in character. In a similar reaction, small amounts of ²⁰NeSiF₂²⁺ and ²²NeSiF₂²⁺ have also been observed which possess much weaker Ne–Si bonds (0.80 eV).

Interactions of germanium or barium with the noble gases have also been observed by mass spectrometry. The Ba²⁺ cation has been shown to interact with He, Ar, Kr, and Xe to form $BaHe^{2+}$, $BaAr^{2+}$, $BaKr^{2+}$, $BaXe^{2+}$, $Ba(Ar)_2^{2+}$, $Ba(Kr)_2^{2+}$, and $Ba(Xe)_2^{2+}$ with the increasing polarizability of the noble-gas

atom resulting in stronger Ba–Ng bonding interactions.³⁹⁸ Nucleophilic displacement of HF from protonated GeF₄ by Xe forms F_3GeXe^+ , a stable cation in the gas phase.³⁹⁹ This class of cations has also led to the proposal, based on quantum-chemical calculations, that $AlNg^{+,400}$ BeNg^{*n*+,401} and MgNg^{*n*+402} (*n*=1, 2; Ng=He, Ne, Ar, Kr, Xe, Rn) may also be formed in the gas phase.

1.25.10 Synthetic Applications of XeF₂

1.25.10.1 XeF₂ as an Oxidizing and Fluorinating Agent

Xenon difluoride has considerable potential as an oxidative fluorinating agent because of its low average Xe–F bond energy (133.9 kJ mol⁻¹) and the inertness of its reduction product, xenon. Furthermore, it has been shown that XeF₂ has considerable kinetic stability, for example, it can be recovered from aqueous solution, in which it is thermodynamically unstable toward hydrolysis, by extraction with CCl₄ or by fractional distillation.⁴⁰² The formation of cationic Xe(II) species such as XeF⁺ and Xe₂F₃⁺ in aHF solvent and in the presence of Lewis acids provides even stronger oxidative fluorinating reagents. The electron affinities of XeF⁺ and Xe₂F₃⁺ salts are greater than that of XeF₂. Electron transfer to either of these cations generates the FXe- radical, which is an effective fluorine atom source.⁴⁰³

Elements, lower fluorides, halides, halo-complexes, and oxides and carbonyls of several elements can be oxidized with XeF_2 in aHF. This section provides the reader with an overview of the extent to which XeF_2 has been utilized as an oxidative fluorinator in inorganic and organic chemistry.

1.25.10.2 Inorganic Syntheses

1.25.10.2.1 XeF_2 as a fluorinating agent in the preparation of fluorofullerenes

Fluorofullerenes having low fluorine contents have been synthesized by the fluorination of bromofullerenes or chlorofullerenes. It is known that the halogen atom can act as a blocking agent to prevent the formation of reaction products having high fluorine content.⁴⁰⁴ The fluorination of $C_{60}Br_{24}$ with elemental fluorine at room temperature yielded a mixture of $C_{60}F_n$ fluorofullerenes ($n \le 44$) which contained predominantly $C_{60}F_{36}$. The reaction of $C_{60}Br_{24}$ bromofullerene with XeF₂ in aHF yielded $C_{60}F_{24}$ which was characterized by X-ray photoelectron spectroscopy.⁴⁰⁵ When BrF₅ was used instead of aHF under the same reaction conditions, $C_{60}Br_4F_{20}$ was the major product.⁴⁰⁶

The solid-phase fluorination of $C_{60}Br_{24}$ with XeF₂ was carried out over a wide range of temperatures.⁴⁰⁷ The degree of substrate fluorination was primarily determined by the duration of reactant contact. It was shown that T_h - $C_{60}Br_{24}$ reacts with XeF₂ dissolved in aHF to form T_h - $C_{60}F_{24}$ in ~80% compositional purity.⁴⁰⁸ This kinetically stable isomer represents the first example of a new family of fluorofullerenes having a noncontiguous addition pattern.

1.25.10.2.2 The role of XeF₂ in the synthesis of Ni₂F₅ and its oxidation by KrF₂

The compound, Ni_2F_5 , is stable at room temperature when kept in a dry atmosphere.⁴⁰⁹ It slowly decomposes in aHF to

NiF₂ and fluorine. Among the higher nickel fluorides, it is the most stable and has been prepared from rhombohedral NiF₃ (*R*-NiF₃) by thermal decomposition, which is the best method for its preparation, or by reduction with an excess of xenon (eqn [80]) or XeF₂ (eqn [81]).

$$4R-\operatorname{NiF}_3 + n\operatorname{Xe} \xrightarrow{22\,^{\circ}\mathrm{C}} 2\operatorname{Ni}_2\operatorname{F}_5 + \operatorname{XeF}_2 + (n-1)\operatorname{Xe}$$
[80]

$$4R-NiF_3 + nXeF_2 \longrightarrow 2Ni_2F_5 + XeF_4 + (n-1)XeF_2$$
 [81]

Mass balances indicate that R-NiF₃ oxidizes XeF₂ to XeF₆. In the presence of XeF₆, a fluorobase, the remaining R-NiF₃ disproportionates to Ni(II) and Ni(IV). Nickel(IV) presumably forms salts with XeF₆ of the type (XeF₅)(Ni_xF_{4x+1}) (x=1, 2, 3, ...), which have no vapor pressure and cannot be removed from the sample by pumping on a vacuum line. There is no further characterization of these minor byproducts.

Reaction of Ni₂F₅ with excess Xe in aHF at room temperature yields XeF₂ (eqn [82]). The oxidation of Ni₂F₅ by excess KrF₂ in aHF yields *R*-NiF₃ (eqn [83] where *n* is excess KrF₂ and *z* is the amount of KrF₂ which decomposes in aHF). The reaction was carried out over 4 days at 0 °C to minimize decomposition of *R*-NiF₃ in aHF.

$$2Ni_2F_5 + nXe \xrightarrow{22 \circ C}_{aHF} 4NiF_2 + XeF_2 + (n-1)Xe$$
 [82]

$$2\operatorname{Ni}_{2}\operatorname{F}_{5} + n\operatorname{Kr}_{2} \xrightarrow[aHF]{0^{\circ}\operatorname{C}}{a}_{a}$$

$$4R\operatorname{Ni}_{7}\operatorname{F}_{3} + (1+z)\operatorname{Kr}_{7} + z\operatorname{F}_{2} + (n-1-z)\operatorname{Kr}_{7}$$
[83]

1.25.10.2.3 Reactions of tri(9-anthryl) derivatives of phosphorus and bismuth

Recently, π -electron systems containing main-group elements have attracted attention because of their unusual photophysical and electrical properties. The approach involves changing the coordination number of the central element or its valence state and represents a powerful new way to control the properties of the π -electron systems through the intrinsic electronic effect as well as through structural changes.

A series of tri(9-anthryl)phosphorus derivatives have been synthesized from tri(9-anthryl)phosphane. The synthesis of tri(9-anthryl)difluorophosphorane was achieved by use of XeF₂ as the oxidative fluorinating agent.⁴¹⁰ Pentacoordinate tri(9-anthryl)difluorophosphorane exhibits intense fluorescence which is comparable to that of the parent anthracene. Xenon difluoride was also used to oxidatively fluorinate tri(9-anthryl)bismutine derivatives to the corresponding tri(9-anthryl)difluorobismuth derivatives.⁴¹¹ The goal of the investigation was to study the influence of the heaviest main-group element, having the largest atomic radius, on through-space interactions among the three anthryl groups.

1.25.10.2.4 Syntheses of organotellurium(IV) diazides and triazides

Xenon difluoride has been used as an oxidative fluorinating agent in the syntheses of organotellurium(IV) diazides and triazides.⁴¹² Diorganotellurides and diorganoditellurides were oxidized by XeF_2 to give the corresponding diorganotellurium difluorides and organotellurium trifluorides. The trifluorides,

which were not isolated, were treated with a slight excess of trimethylsilyl azide to form alkyl/aryltellurium(IV) triazides.

Noble-Gas Chemistry

815

1.25.10.2.5 Syntheses of Pd(II), Pd(IV), Pt(II), and Pt(IV) fluoride complexes

Transition metal fluoride complexes are important intermediates in selective C–F bond activation processes and in catalysis. Because the nucleophilic fluoride anion is known to cause reductive decomposition of several Pd(II) phosphane complexes,⁴¹³ an alternative approach to their fluorinations was investigated.⁴¹⁴ When the dimethyl L₂Pd(CH₃)₂ complexes were treated with an equivalent amount of XeF₂ in dry CH₂Cl₂, the quantitative formation of the difluoro complex, L₂PdF₂, resulted (eqn [84]). The reaction was carried out in the temperature range -30 °C to room temperature using di(*i*-propylphosphino)propane (dippp) and di(cyclohexylphosphino)propane (dcpp) as ligands.

$$L_2Pd(CH_3)_2 + XeF_2 \rightarrow L_2PdF_2 + Xe + C_2H_6$$
 [84]

The compounds, L_2PdF_2 , are white solids which decompose in solution at room temperature and as solids in an inert atmosphere. The exact stoichiometry in eqn [84] must be adhered to because a stoichiometric excess of XeF₂ results in partial decomposition, and the formation of fluorinated phosphorus(V) products, palladium black, and HF adducts of L_2PdF_2 .⁴¹⁵

No change in oxidation state occurs because the addition of two fluorine atoms is coupled with the reductive elimination process. This method was also applied in the synthesis of the Pt(II) fluoro-complexes. When $(R_3P)_2Pt(Ph)_2$ was allowed to react with XeF₂ in CH₂Cl₂ solvent in the temperature range, -30 °C to room temperature, the complexes, L₂PtF₂, L₂=dippp, dppp, 2Ph₃P, were obtained in quantitative yields. Biphenyl was identified as a side product (eqn [85]⁴¹⁵):

$$L_2Pt(C_6H_5)_2 + XeF_2 \rightarrow L_2PtF_2 + Xe + C_{12}H_{10}$$
 [85]

Stable Pd(II) complexes of the type $(R_3P)_2PtF_2$ are strictly limited to alkylphosphane ligands that can adopt mutual cis orientations. The platinum analogs are more stable, yielding isolable difluoride complexes with both alkyl and aryl phosphane ligands.

The Pt(IV) difluoro complexes, $(R_3P)_2Ar_2PtF_2$, were synthesized by the reaction of Pt(II) diaryl precursors with XeF₂. The fluoro ligands are located in *trans*-positions relative to the aryl groups in the distorted octahedral coordination sphere of the metal.⁴¹⁶

The reaction of a series of chelating Pd(II) aryl iodide complexes with XeF₂ results in remarkably mild and selective reductive elimination of the iodoarene and the formation of the rare Pd(II) difluorodiphosphane complexes.⁴¹⁷ Although Ar–X (X=halogen atom) reductive elimination can be influenced by chelate size, no such effect was observed in the cases of five- and six-membered chelates which underwent clean Ar–I reductive eliminations.

Aryl fluoride groups are important components of many biologically active molecules. While a variety of synthetic approaches are available for generating sp³ C–F bonds, there are relatively few general and practical methods for the formation of aryl fluorides. The reaction of the Pd(II) precursor, (*t*-Bu-bpy)Pd^{II}(*p*-FC₆H₄)(F), with the electrophilic fluorinating

agent, XeF₂, in nitrobenzene at 90 °C for 1 h yielded 1, 4-difluorobenzene (57%) and the biaryl species (7%).⁴¹⁸ During the fluorination of (*t*-Bu-bpy)Pd^{II}(*p*-FC₆H₄)(F) with XeF₂ at 70 °C for 2.5 min, the new organometallic species, (*t*-Bu-bpy)Pd^{IV}(Ar)(F)₂(FHF), was formed. This is the first reported example of a Pd^{IV} difluoride. The stable compound, (*t*-Bu-bpy)Pd^{IV}(Ar)(F)₂(FHF), undergoes Ar—F bond formation in the presence of an 'F^{+/} source, for example, XeF₂, (PhSO₂)₂NF, 1-fluoro-2,4,6-trimethylpyridinium tetrafluoridoborate.⁴¹⁸

1.25.10.2.6 Oxidative carbonylation of Fe(CO)₅ in HF/SbF₅ and HF/BF₃

It has been shown that XeF₂ is a better reagent for oxidative carbonylation of Fe(CO)₅ than Cl_2^{419} or AsF₅.⁴¹⁹ The Fe(CO)₆²⁺ cation was synthesized according to eqn [86].⁴²⁰ The reaction was carried out in HF/SbF₅ under 1 atm of CO at 50 °C for 2 days (yield ~50%).

$$\frac{\text{Fe}(\text{CO})_5 + \text{XeF}_2 + \text{CO} + 4\text{SbF}_5 \rightarrow}{(\text{Fe}(\text{CO})_6)(\text{Sb}_2\text{F}_{11})_2 + \text{Xe}}$$
[86]

By analogy with the generation of $Fe(CO)_6^{2+}$ in HF/SbF₅, the oxidation of $Fe(CO)_5$ by XeF₂ in HF/BF₃ proceeds according to eqn [87].⁴²¹ The reaction was carried out in HF/BF₃ at 25 °C for 3 days (yield ~73%).

$$\frac{\text{Fe}(\text{CO})_5 + \text{XeF}_2 + \text{CO} + 2\text{BF}_3 \rightarrow}{(\text{Fe}(\text{CO})_6)(\text{BF}_4)_2 + \text{Xe}}$$
[87]

1.25.10.2.7 Syntheses of polyfluoroorganoiodine(V) tetrafluorides

Xenon difluoride solutions of 1,1,1,3,3-pentafluorobutane (PFB) acidified with BF₃ fluorinates perfluoroorganyliodides and perfluoroorganoiodine difluorides to give perfluoroorganoiodine tetrafluorides.⁴²² When iodopentafluorobenzene was used as the starting compound, fluorine addition to the pentafluorophenyl group occurred, yielding cyclohexadieny-liodine and cyclohexenyliodine tetrafluorides in addition to fluorination of the iodine center. Perfluorocyclohexyliodine tetrafluoride was not obtained even when a stronger Lewis acid such as NbF₅ was used in aHF solvent.

Xenon difluoride acidified with BF_3 or NbF_5 does not add fluorine across the C=C bond in molecules containing the CF=CIF₄ group. Furthermore, fluorine addition to the IF₄ group also did not occur.

Fluorination of perfluoroalkenyl and perfluoroaryl iodides, $C_6F_5IF_n$ (n=0, 2, 4), with XeF₂ acidified by HF, BF₃, or NbF₅ yields alk-1-enyliodine tetrafluorides and cycloalk-1-enyliodine tetrafluorides, respectively. The formation of organoiodine(VII) or perfluorocyclohexyliodine tetrafluoride was not detected even when XeF₂/NbF₅/HF was used.

The electrophilic oxygenation of pentafluorophenyl iodo compounds, $C_6F_5IF_n$ (n = 0, 2, 4), with XeF₂/H₂O in aHF yields isomeric mixtures of oxopentafluoro-cyclohexadien-1-yliodine tetrafluorides, $C_6(O)F_5IF_4$.⁴²³

1.25.10.2.8 Syntheses of Ir(III) fluoride complexes

Although the coordination chemistry of *N*-heterocyclic carbenes (NHCs) has been extensively studied, reports of late transition metal fluoride-*N*-heterocyclic carbene complexes had been restricted to monofluorides. The oxidative fluorination of a series of neutral and cationic iridium(I) NHC complexes (NHC=IMes=N,N'-bis(2,4,6-trimethylphenyl)imidazole-2-ylidene); (NHC=IPr=N,N'-bis(2,6-diisopropylphenyl)imidazole-2-ylidene) with XeF₂ in solution generates difluoroiridium(III) complexes, [IrClF₂(NHC)(COD)], [IrClF₂(CO)₂(NHC)] (NHC=IMes, IPr; COD=1,5-cyclooctadiene), [IrF₂py(IMes)(COD)][BF₄], [IrF₂L(CO)₂(NHC)][BF₄] (NHC=IMes; L=PPh₂Et, PPh₂CCPh, py; NHC=IPr, L=py), stabilized by the NHC ligands.⁴²⁴

1.25.10.2.9 Fluorination of dibenzoselenophene and dibenzo(1,2)diselenine

The syntheses of the selenium-containing heterocycles dibenzoselenophene (biphenSe) and dibenzo(1,2)-diselenine (biphenSe₂) were optimized and their fluorinations with XeF₂ in CH₂Cl₂ were investigated.⁴²⁵ The reaction of biphenSe with XeF₂ yielded the expected organoselenium(IV) difluoride, biphenSeF₂, and the reaction between biphenSe₂ and XeF₂ yielded biphen(SeF₃)₂.

1.25.10.3 Organic Syntheses

Xenon difluoride reacts with selenides of the type RSe–EMe₃ (R=CH₃, CH₂CH₃, C₆H₅; E=Si, Ge, Sn, Pb) by cleavage of the Se–E bond yielding RSe–F as an intermediate and Me₃EF.⁴²⁶ By contrast, the Se–C bond in PhSe-*t*-Bu is stable to attack by XeF₂. The intermediacy of RSe–F was confirmed by addition to acetylenes. Thus, the fluoroselenenylation of acetylenes gives fluoro-(organylseleno)olefins. In the cases of E=Si, Ge, Sn, and Pb, the aryl and *n*-alkyl groups are suitable as R substituents.

The XeF₂-CF₃SO₃H-Me₃SiNCO system makes it possible to conveniently perform electrophilic, one-step aminations of aromatic compounds leading to the formation of anilines in moderate yields.⁴²⁷ In the case of the XeF₂-CF₃SO₃H-Me₃SiNCO system, OCNXeOSO₂CF₃ is postulated to be an intermediate, which readily oxidizes iodobenzene to [PhI–NCO][OTf].

The compound, 3-*trans*-bromo-5-*cis*-fluoro-2,6,6-trimethyl-2-phenyl-tetrahydropyran, has been prepared by the treatment of racemic 5-bromo-2,2,6-trimethyl-6-phenyltetrahydropyrancarboxylic acid with XeF₂ in anhydrous CH_2Cl_2 .⁴²⁸

For the first time, *ipso*-amidation of boronic acids by XeF_2 has been achieved under mild reaction conditions.⁴²⁹ The method provides a simple, one-pot procedure for the direct synthesis of a series of anilides from the corresponding arylboronic acids and alkyl/aryl nitriles. Arylboronic acids, which have electron-donating groups, give anilides in high yield, while moderate yields are obtained for arylboronic acids which have electron-withdrawing groups.

The reaction of carboxylic acids with XeF₂ in CH₂Cl₂ was studied in polytetrafluoroethylene (PTFE) and in Pyrex[®] vessels.⁴³⁰ Fluorodecarboxylation to HF, CO₂, Xe, and R–F consistently occurred in PTFE, whereas the use of a Pyrex[®] vessel was reported to be a very effective heterogeneous catalyst for alternative reaction channels, including rearrangement and cyclization, which are consistent with the formation of intermediate fluoroxenon esters, RC(O)OXeF.⁴³⁰ The use of CH₂Cl₂ as a solvent and a Pyrex[®] surface appears

to be superior for achieving rapid electrophilic reactions with XeF_2 .

Treatment of *cis*-5-norbornene-2,3-*endo*-dicarboxylic acid or its monomethyl and dimethyl esters with [F-TEDA][BF₄] (TEDA=triethylenediamine) or XeF₂ resulted in selective fluorolactonization. The reactions of 5-norbornene-*endo*-2carboxylic acid and its monomethyl ester with [F-TEDA][BF₄] or XeF₂ proceed in a nonselective manner to give fluorolactonization as well as addition and rearrangement products.⁴³¹ The factor primarily responsible for selectivity of the fluorolactonization is the presence of two endo-oriented carboxyl groups in the substrate molecule. It was found that the electrophilicity and the type of the fluorinating agent are of secondary importance in this sense.

The reaction of (4*E*)-4-[(dimethylamino)methylidene]-1,8,8-trimethyl-2-oxabicyclo[3.2.1] octan-3-one with XeF₂ in CH₃CN in a 1:1.24 molar ratio formed the α -fluoro aldehyde, 4-fluoro-1,8,8-trimethyl-3-oxo-2-oxabicyclo[3.2.1]octane-4carbaldehyde, as a single diastereoisomer in 20% yield.⁴³² The formation of this product was anticipated because similar enol acetates and silyl enol ethers also yield α -fluoro carbonyl products upon reaction with XeF₂.⁴³³⁻⁴⁴⁰

The formation of 4-fluoro-1,8,8-trimethyl-3-oxo-2-oxabicyclo[3.2.1]octane-4-carbaldehyde can account for the initial attack of electrophilic XeF₂ from the less hindered endo-face of the nucleophilic enamine C=C double bond of (4*E*)-4-[(dimethylamino)methylidene]-1,8,8-trimethyl-2-oxabicyclo-[3.2.1]octan-3-one to form the 4-fluoro-1,8,8-trimethyl-3-oxo-2-oxabicyclo[3.2.1]oct-4-yl)-*N*,*N*-dimethyl-methaniminium intermediate. The product was subsequently hydrolyzed by water present in the solvents used for product purification to give the final α -fluoro aldehyde.

The first synthesis of 1'-fluoronucleosides, which have been long-standing synthetic targets as potential antimetabolites, was achieved⁴⁴¹ by fluorination of 2',3',5'-tri-O-acetyl-1'phenylselenouridine with electrophilic and nucleophilic fluorinating agents. Treatment of 2',3',5'-tri-O-acetyl-1'phenylselenouridine with XeF₂ gave the desired β-nucleoside 1'-fluorouridine triacetate as the major product in 29% yield.

Complexes of the type (NHC)AuMe have been oxidatively fluorinated by XeF₂ to yield *cis*-(NHC)AuMeF₂ products and were found to be in equilibrium with their fluoridedissociated, dimeric [(NHC)AuMe(μ -F)]₂[F]₂ forms.⁴⁴²

1.25.10.4 Applications of [¹⁸F]XeF₂ to the Syntheses of ¹⁸F-Labeled Radiopharmaceuticals for Positron Emission Tomography

The chemistry of $[^{18}\text{F}]\text{F}^-$ and $[^{18}\text{F}]\text{F}_2$, and related fluorinating agents derived from these compounds, is well known^{443–445} and continues to be an active research area with recent interest in transition metal-catalyzed fluorination creating electrophilic ^{18}F -labeled fluorination sources from $[^{18}\text{F}]\text{F}^-$.^{446,447} Of particular interest is ^{18}F -labeled xenon difluoride which has been used as a fluorinating agent for a wide variety of inorganic and organic compounds.⁴⁴⁸ Fluorine-18 labeled XeF₂ has been used in the first regioselective fluorinations of the most commonly used ^{18}F -labeled radiopharmaceuticals for positron emission tomography (PET) such as $[^{18}\text{F}]^2$ -fluoro-2-deoxy-D-glucose and $[^{18}\text{F}]^6$ -fluoro-L-DOPA. The first preparation of fluorine-18-labeled XeF₂

was obtained by treatment of SO₂ClF solutions of XeF₂ with [¹⁸F] HF, [¹⁸F]SiF₄, or [¹⁸F]AsF₅.²²⁰ It was later shown that [¹⁸F]XeF₂ could be synthesized by thermochemical reaction of [¹⁸F]F₂ and xenon.⁴⁴⁹ A more recent study⁴⁵⁰ claimed catalytic behavior of 2,2,2-crypt-M⁺ in the ionization of XeF₂ and in fluoride ion exchange with XeF₂ in a glass or a glassy carbon vial⁴⁴⁹ and subsequently in a microfluidic reactor;⁴⁵¹ however, this exchange is attributable to [¹⁸F]HF formation.²²⁰ In these reactions, ¹⁸F-labeled HF, generated by fluoride attack of organic solvents and/or a cryptand, undergoes fluorine exchange with XeF₂ by acting as a weak fluoride ion acceptor toward XeF₂.²²¹ The exchange of fluoride with XeF₂ has been demonstrated by NMR EXSY in CH₃CN solvent,²²⁰ in conjunction with singleselective inversion NMR spectroscopy and most likely proceeds through the XeF₃⁻ intermediate.²²⁴

1.25.11 Conclusion

In the aftermath of Neil Bartlett's discovery of noble-gas reactivity³ 50 years ago, the syntheses and structural characterization of noble-gas compounds have burgeoned to become an intriguing and highly challenging topic in contemporary inorganic chemistry. Although compounds having expanded valence octets were known for nearly two-thirds of the maingroup nonmetals prior to Bartlett's discovery, the success of valency theory enforced the notion that filled octets are to be associated with stability. Neil Bartlett's momentous discovery of noble-gas reactivity on 23 March 1962 with the synthesis of '[Xe][PtF₆]' resulted in a flurry of synthetic and structural work in the field that quickly revealed the true nature of two of the group 18 elements, xenon and krypton, and laid waste to the octet myth then prevalent in chemistry textbooks.

This chapter summarizes only 11 years of progress in noblegas chemistry and illustrates, beyond doubt, that noble-gas chemistry is a vibrant field rife with interesting new compounds, bonding modalities, rich structural chemistry, and intriguing synthetic applications. The recent record of research achievements in the field of noble-gas chemistry promises new and exciting developments in fundamental and applied chemistry that were not dreamed of by Neil Bartlett and his fellow researchers in the formative years of this field. The rapidity of continued developments in noble-gas chemistry is intimately tied to those who have the imagination and skills to confront its challenges and those who have the foresight to fund curiosity-driven research.

Acknowledgments

The authors are grateful to Dr. Hélène P.A. Mercier for her generous and tireless assistance in preparing, editing, and proof reading this chapter.

References

- 1. Thomas, J. M. Angew. Chem. Int. Ed. 2004, 43, 6418–6424.
- 2. Yost, D. M.; Kaye, A. L. J. Am. Chem. Soc. 1933, 55, 3890-3892.
- 3. Bartlett, N. Proc. Chem. Soc. 1962, 218.
- Bartlett, N. In *Fluorine Chemistry at the Millennium, Fascinated by Fluorine*, 1st ed.; Banks, R. E., Ed.; Elsevier: Oxford, 2000; p 37, Chapter 3.

- Bartlett, N.; Lohmann, D. H. Proc. Chem. Soc. 1962, 115–116 and references therein.
- Bartlett, N. In: Bartlett, N., Ed.; World Scientific Series in 20th Century Chemistry, World Scientific, 2005; Vol. 9, pp 47–50.
- Ball, P. In *Elegant Solutions*. The Royal Society of Chemistry: Cambridge, 2005 pp 139–150.
- Graham, L.; Graudejus, O.; Jha, N. K.; Bartlett, N. Coord. Chem. Rev. 2000, 197, 321–334.
- 9. Christe, K. O. Angew. Chem. Int. Ed. 2001, 40, 1419-1421.
- 10. Gerken, M.; Schrobilgen, G. J. Coord. Chem. Rev. 2000, 197, 335–395.
- 11. Tramšek, M.; Žemva, B. Acta Chim. Slov. 2006, 53, 105–116.
- 12. Frohn, H.-J.; Bardin, V. V. *Organometallics* **2001**, *20*, 4750–4762.
- Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2011, 49, 12359–12373.
- 14. Jacox, M. E. Chem. Soc. Rev. 2002, 31, 108-115.
- Lehmann, J. F.; Mercier, H. P. A.; Schrobilgen, G. J. Coord. Chem. Rev. 2002, 233, 1–39.
- 16. Seppelt, K. Z. Anorg. Allg. Chem. 2003, 629, 2427–2430.
- 17. Lovallo, C. C.; Klobukowski, M. Chem. Phys. Lett. 2003, 368, 589-593.
- 18. Tramšek, M.; Žemva, B. J. Fluorine Chem. 2006, 127, 1275–1284.
- 19. Raftery, D. Ann. Rep. NMR Spectrosc. 2006, 57, 205–270.
- 20. Grochala, W. Chem. Soc. Rev. 2007, 36, 1632-1655.
- Gerken, M.; Schrobilgen, G. J. In *Encyclopedia of Magnetic Resonance*; Harris, R. K., Wasylishen, R., Eds.; Wiley: Chichester, 2011.
- Nabiev, Sh. Sh.; Sokolov, V. B.; Chaivanov, B. B. Crystallogr. Rep. 2011, 56, 774–791.
- 23. Hornbeck, J. A.; Molnar, J. P. Phys. Rev. 1951, 84, 621–625.
- 24. Samson, J. A. R.; Cairns, R. B. J. Opt. Soc. Am. 1966, 56, 1140-1141.
- Miller, T. M.; Ling, J. H.; Saxon, R. P.; Moseley, J. T. *Phys. Rev. A* 1976, *13*, 2171–2177.
- Ng, C. Y.; Trevor, D. J.; Mahan, B. H.; Lee, Y. T. J. Chem. Phys. 1976, 65, 4327–4329.
- Lorents, D. C.; Olson, R. E.; Conklin, G. M. Chem. Phys. Lett. 1973, 20, 589–591.
- Jones, P. R.; Conklin, G. M.; Lorents, D. C.; Olson, R. E. *Phys. Rev. A* 1974, *10*, 102–109.
- Stein, L.; Norris, J. R.; Downs, A. J.; Minihan, A. R. J. Chem. Soc. Chem. Commun. 1978, 502–504.
- 30. Stein, L. *Nature* **1973**, *243*, 30–32.
- Brown, D. R.; Clegg, M. J.; Downs, A. J.; Fowler, R. C.; Minihan, A. R.; Norris, J. R.; Stein, L. *Inorg. Chem.* **1992**, *31*, 5041–5052.
- 32. Stein, L.; Henderson, W. W. J. Am. Chem. Soc. 1980, 102, 2856–2857.
- 33. Drews, T.; Seppelt, K. Angew. Chem. Int. Ed Engl. 1997, 36, 273-274.
- 34. Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
- Seidel, S.; Seppelt, K.; van Wüllen, C.; Sun, X. Y. Angew. Chem. Int. Ed. 2007, 46, 6717–6720.
- 36. Kalus, R.; Hrivňák, D. *Chem. Phys.* **2002**, *278*, 21–29.
- 37. Paška, P.; Hrivňák, D.; Kalus, R. Chem. Phys. 2003, 286, 237–248.
- 38. Kalus, R.; Hrivňák, D.; Paška, P. Chem. Phys. 2005, 311, 287–297.
- von Issendorf, B.; Hofmann, A.; Haberland, H. J. Chem. Phys. 1999, 111, 2513–2518.
- Gascón, J. A.; Hall, R. W.; Ludewigt, C.; Haberland, H. J. Chem. Phys. 2002, 117, 8391–8403.
- Simpson, M. B.; Poliakoff, M.; Turner, J. J.; Maier, W. B.; McLaughlin, J. G. J. Chem. Soc. Chem. Commun. **1983**, 1355–1357.
- 42. Weiller, B. H. J. Am. Chem. Soc. 1992, 114, 10910-10915.
- Fairhurst, S. A.; Morton, J. R.; Perutz, R. N.; Preston, K. F. *Organometallics* 1984, *3*, 1389–1391.
- 44. Wells, J. R.; Weitz, E. J. Am. Chem. Soc. 1992, 114, 2783-2787.
- Ehlers, A. W.; Frenking, G.; Baerends, E. J. Organometallics 1997, 16, 4896–4902.
- Sun, X.-Z.; Grills, D. C.; Nikiforov, S. M.; Poliakoff, M.; George, M. W. J. Am. Chem. Soc. 1997, 119, 7521–7525.
- Weiller, B. H.; Wasserman, E. P.; Bergman, R. G.; Moore, C. B.; Pimentel, G. C. J. Am. Chem. Soc. 1989, 111, 8288–8290.
- Weiller, B. H.; Wasserman, E. P.; Moore, C. B.; Bergman, R. G. J. Am. Chem. Soc. 1993, 115, 4326–4330.
- Bengali, A. A.; Schultz, R. H.; Moore, C. B.; Bergman, R. G. J. Am. Chem. Soc. 1994, 116, 9585–9589.
- Bengali, A. A.; Bergman, R. G.; Moore, C. B. J. Am. Chem. Soc. 1995, 117, 3879–3880.
- McNamara, B. K.; Yeston, J. S.; Bergman, R. G.; Moore, C. B. J. Am. Chem. Soc. 1999, 121, 6437–6443.

- Schröder, D.; Schwarz, H.; Hrušák, J.; Pyykkö, P. Inorg. Chem. 1998, 37, 624–632.
- Evans, C. J.; Lesarri, A.; Gerry, M. C. L. J. Am. Chem. Soc. 2000, 122, 6100–6105.
- 54. Seidel, S.; Seppelt, K. Science 2000, 290, 117-118.
- 55. Drews, T.; Seidel, S.; Seppelt, K. *Angew. Chem. Int. Ed.* **2002**, *41*, 454–456. 56. Einstein, F. W. B.; Rao, P. R.; Trotter, J.; Bartlett, N. J. Chem. Soc. A **1967**,
- 478–482.
- 57. Hwang, I. C.; Seidel, S.; Seppelt, K. Angew. Chem. Int. Ed. 2003, 42, 4392–4395.
- 58. Küster, R.; Seppelt, K. Z. Anorg. Allg. Chem. 2000, 626, 236–240.
- Lucier, G.; Elder, L. H.; Chacon, L.; Bartlett, N. *Eur. J. Solid State Inorg. Chem.* 1996, *33*, 809–820.
- 60. Berski, S.; Latajka, Z.; Andrés, J. Chem. Phys. Lett. 2002, 356, 483-489.
- Tyrra, W.; Naumann, D. In *Inorganic Chemistry Highlights*; Meyer, G., Naumann, D., Wesemann, L., Eds.; Wiley-VCH: Weinheim, 2002; pp. 297–317.
- 62. Frohn, H.-J.; Jakobs, S. J. Chem. Soc. Chem. Commun. 1989, 10, 625–627.
- 63. Naumann, D.; Tyrra, W. J. Chem. Soc. Chem. Commun. **1989**, *10*, 47–50.
- 64. Frohn, H.-J.; Franke, H.; Bardin, V. V. Z. Naturforsch. **1999**, *54b*, 1495–1498
- 65. Frohn, H.-J.; Bardin, V. V. *Z. Anorg. Allg. Chem.* **2002**, *628*, 1853–1856.
- Koppe, K.; Bilir, V.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J. *Inorg. Chem.* 2007, 46, 9425–9437.
- Koppe, K.; Frohn, H.-J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2008, 47, 3205–3217.
- Emara, A. A. A.; Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1987, 1644–1646.
- 69. Emara, A. A. A.; Schrobilgen, G. J. Inorg. Chem. 1992, 31, 1323–1332.
- Fir, B. A.; Mercier, H. P. A.; Schrobilgen, G. J.; Emara, A. A. A., unpublished results.
- 71. Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2007, 46,
- 1369–1378.
- 72. Enjalbert, R.; Galy, J. Acta Crystallogr. B 2002, 58, 1005–1010.
- 73. Frohn, H.-J.; Bardin, V. V. J. Chem. Soc. Chem. Commun. 1999, 919-920.
- 74. Frohn, H.-J.; Adonin, N. Yu.; Bardin, V. V. Z. Anorg. Allg. Chem. 2003, 629, 2499–2508.
- 75. Frohn, H.-J.; Bardin, V. V. Z. Anorg. Allg. Chem. 2003, 629, 2465–2469.
- Zhdankin, V. V.; Stang, P. J.; Zefirov, N. S. J. Chem. Soc. Chem. Commun. 1992, 578–579.
- 77. Frohn, H.-J.; Bardin, V. V. Chem. Commun. 2003, 2352-2353.
- 78. Frohn, H.-J.; Bardin, V. V. Eur. J. Inorg. Chem. 2006, 3948–3953.
- 79. Frohn, H. J.; Bardin, V. V. Z. Anorg. Allg. Chem. 2004, 630, 1022-1024.
- 80. Frohn, H.-J.; Bardin, V. V. Z. Anorg. Allg. Chem. 2007, 633, 1627–1632
- Abo-Amer, A.; Frohn, H.; Steinberg, C.; Westphal, U. J. Fluorine Chem. 2006, 127, 1311–1323.
- 82. Mercier, H. P. A.; Moran, M. D.; Sanders, J. C. P.; Schrobilgen, G. J.;
- Suontamo, R. J. *Inorg. Chem.* **2005**, *44*, 49–60. 83. Ulferts, P.; Seppelt, K. *Z. Anorg. Allg. Chem.* **2004**, *630*, 1589–1593.
- 84. Sladky, F. *Monatsh. Chem.* **1970**, *101*, 1578–1582.
- 85. Sladky, F. *Angew. Chem. Int. Ed Engl.* **1970**, *9*, 375–376.
- Fir, B. A.; Mercier, H. P. A.; Sanders, J. C. P.; Dixon, D. A.; Schrobilgen, G. J. J. Fluorine Chem. 2001, 110, 89–107.
- Selig, H.; Holloway, J. H. In *Topics in Current Chemistry*; Boschke, F. L., Ed.; Springer: Berlin, 1984; Vol. 124, pp 33–90.
- Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J.; Steinberg, C.; Suontamo, R. J. J. Am. Chem. Soc. 2004, 126, 5533–5548.
- Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J. In *Recent Developments in Carbocation and Onium Ion Chemistry*, ACS Symposium Book Series 965; Laali, K., Ed.; American Chemical Society: Washington, DC, 2007; pp 394–427, Chapter 19.
- Mercier, H. P. A.; Moran, M. D.; Schrobilgen, G. J.; Suontamo, R. J. J. Fluorine Chem. 2004, 125, 1553–1807.
- 91. Keller, N.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 2118–2129.
- Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1994, 116, 2921–2937.
- Elliott, H. St. A.; Lehmann, J. F.; Mercier, H. P. A.; Jenkins, H. D. B.; Schrobilgen, G. J. *Inorg. Chem.* **2010**, *49*, 8504–8523.
- 94. Holloway, J. H.; Hope, E. G. Adv. Inorg. Chem. 1998, 46, 51-100.
- Casteel, W. J., Jr.; Kolb, P.; LeBlond, N.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 929–942.
- Gerken, M.; Kolb, P.; Wegner, A.; Mercier, H. P. A.; Borrmann, H.; Dixon, D. A.; Schrobilgen, G. J. *Inorg. Chem.* 2000, *39*, 2813–2824.
- 97. Fir, B.; Whalen, J. M.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2006, 45, 1978–1996.

- Templeton, L. K.; Templeton, D. H.; Seppelt, K.; Bartlett, N. Inorg. Chem. 1976, 15, 2718–2720.
- Gillespie, R. J.; Hargittai, I. *The VSEPR Model of Molecular Geometry*. Allyn & Bacon: Boston, 1991.
- 101. Oberhammer, H.; Seppelt, K. Inorg. Chem. 1978, 17, 1435–1439.
- 102. Zylka, P.; Oberhammer, H.; Seppelt, K. J. Mol. Struct. 1991, 243, 411-418.
- 103. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. Inorg. Chem. 1995, 34, 5261–5273.
- 104. Casteel, W. J., Jr.; MacLeod, D. M.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1996, 35, 7279–7288.
- 105. Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2009, 131, 7272–7286.
- Smith, G. L.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2008, 47, 4173–4184.
- 107. Smith, G. L.; Schrobilgen, G. J. Inorg. Chem. 2009, 48, 7714–7728.
- 108. Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1988, 1506–1508.
- 109. Emara, A. A., Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1988, 257–259.
- 110. Sanders, J. C. P.; Schrobilgen, G. J. In A Methodological Approach to Multinuclear NMR in Liquids and Solids-Chemical Applications, NATO Advanced Study Institute, Magnetic Resonance; Granger, P., Harris, R. K., Eds.; Kluwer Academic Publishers: Dordrecht, 1990; pp 157–186, Chapter 11.
- 111. LeBlond, R. D.; DesMarteau, D. D. J. Chem. Soc. Chem. Commun. 1974, 555–556.
- 112. DesMarteau, D. D.; LeBlond, R. D.; Hossain, S. F.; Nothe, D. J. Am. Chem. Soc. 1981, 103, 7734–7739.
- 113. Sawyer, J. F.; Schrobilgen, G. J.; Sutherland, S. J. Inorg. Chem. 1982, 21, 4064–4072.
- 114. Schumacher, G. A.; Schrobilgen, G. J. Inorg. Chem. 1983, 22, 2178–2183.
- 115. Faggiani, R.; Kennepohl, D. K.; Lock, C. J. L.; Schrobilgen, G. J. Inorg. Chem. 1986, 25, 563–571.
- 116. Glemser, O.; Mews, R. Angew. Chem. Int. Ed Engl. 1980, 19, 883-899.
- 117. Kirchhoff, W. H.; Wilson, E. B., Jr. J. Am. Chem. Soc. **196**2, *84*, 334–336. 118. Borrmann, T.; Lork, E.; Mews, R.; Parsons, S.; Petersen, J.; Stohrer, W.-D.;
- Watson, P. G. *Inorg. Chim. Acta* 2008, *361*, 479–486.
 Buss, B.; Clegg, W.; Hartmann, G.; Jones, P. G.; Mews, R.; Noltemeyer, M.;
- Sheldrick, G. M. J. Chem. Soc. Datton Trans. 1981, 61–63.
- 120. Behrens, U.; Lork, E.; Petersen, J.; Waterfeld, A.; Mews, R. Z. Anorg. Allg. Chem. 1997, 623, 1518–1524.
- 121. Zalkin, A.; Ward, D. L.; Biagioni, R. N.; Templeton, D. H.; Bartlett, N. Inorg. Chem. 1978, 17, 1318–1322.
- 122. Gillespie, R. J.; Landa, B. Inorg. Chem. 1973, 12, 1383–1388.
- 123. McRae, V. M.; Peacock, R. D.; Russell, D. R. Chem. Commun. 1969, 62-63.
- 124. Burgess, J.; Fraser, C. J. W.; McRae, V. M.; Peacock, R. D.; Russell, D. R. In *Inorganic Nuclear Chemistry*, Katz, J. J., Sheft, I., Eds.; Pergamon Press: New York, 1976; supplement to the *J. Inorg. Nucl. Chem.*; Herbert H. Hyman Memorial Volume, pp 183–188.
- 125. Gillespie, R. J.; Martin, D.; Schrobilgen, G. J. J. Chem. Soc. Dalton Trans. 1980, 1898–1903.
- Lehmann, J. F.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2001, 40, 3002–3017.
- 127. Lehmann, J. F.; Schrobilgen, G. J. J. Fluorine Chem. 2003, 119, 109–124.
- 128. Edwards, A. J.; Holloway, J. H.; Peacock, R. D. Proc. Chem. Soc. 1963, 275–276.
- 129. Levy, H. A.; Agron, P. A. *J. Am. Chem. Soc.* **1963**, *85*, 241–242.
- 130. Agron, P. A.; Begun, G. M.; Levy, H. A.; Mason, A. A.; Jones, C. G.; Smith, D. F. Science 1963, 139, 842–844.
- 131. Siegel, S.; Gebert, E. J. Am. Chem. Soc. 1963, 85, 240.
- Bartlett, N.; Gennis, M.; Gibler, D. D.; Morrell, B. K.; Zalkin, A. *Inorg. Chem.* 1973, *12*, 1717–1721.
- 133. Brassington, N. J.; Edwards, H. G. M.; Long, D. A. J. Chem. Soc., Faraday Trans. 2 1978, 74, 1208–1213.
- 134. Bürger, H.; Kuna, R.; Ma, S.; Breidung, J.; Thiel, W. J. Chem. Phys. 1994, 101, 1–14.
- 135. Rundle, R. E. J. Am. Chem. Soc. 1963, 85, 112-113
- 136. Christe, K. O.; Zhang, X.; Bau, R.; Hegge, J.; Olah, G. A.; Prakash, G. K. S.; Sheehy, J. A. J. Am. Chem. Soc. 2000, 122, 481–487.
- 137. Minkwitz, R.; Neikes, F. Inorg. Chem. 1999, 38, 5960-5963.
- 138. Minkwitz, R.; Dzyk, M. *Eur. J. Inorg. Chem.* **2002**, 569–572.
- 139. Sladky, F. O.; Bulliner, P. A.; Bartlett, N. J. Chem. Soc. A 1969, 2179–2188.
- 140. Fir, B. A.; Gerken, M.; Pointer, B. E.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. *J. Fluorine Chem.* **2000**, *105*, 159–167.

- 141. Bartlett, N.; DeBoer, B. G.; Hollander, F. J.; Sladky, F. O.; Templeton, D. H.; Zalkin, A. *Inorg. Chem.* **1974**, *13*, 780–785.
- 142. Nelson, L. Y.; Pimentel, G. C. Inorg. Chem. 1967, 6, 1758–1759.
- 143. Beattie, I. R.; German, A.; Blayden, H. E.; Brumbach, S. B. J. Chem. Soc. Dalton Trans. 1975, 1659–1662.
- 144. Boal, D.; Ozin, G. A. Spectrosc. Lett. **1971**, *4*, 43–46.
- Perlow, G. J.; Perlow, M. R. J. Chem. Phys. **1968**, 48, 955–961.
 Willet, R. D.; Peterson, S. W.; Coyle, B. A. J. Am. Chem. Soc. **1977**, 99,
- 8202–8208. 147. Frohn, H.-J.; Schroer, T.; Henkel, G. *Angew. Chem. Int. Ed.* **1999**, *38*, 2554–2556.
- 148. Siedel, S.; Seppelt, K. Angew. Chem. Int. Ed. 2001, 40, 4225–4227.
- 149. Seidel, S.; Seppelt, K. Angew. Chem. Int. Ed. 2000, 39, 3923-3925.
- Carpenter, G. B.; Richards, S. M. Acta Crystallogr. 1962, 15, 360–364 and references therein.
- Boswijk, K. H.; van der Heide, J.; Vos, A.; Wiebenga, E. H. Acta Crystallogr. 1956, 9, 274–277.
- Hughes, M.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 271–284.
- 153. Minkwitz, R.; Nowicki, G. Angew. Chem. Int. Ed Engl. 1990, 29, 688-689.
- 154. Gerken, M.; Moran, M. D.; Mercier, H. P. A.; Pointner, B. E.; Schrobilgen, G. J.; Hoge, B.; Christe, K. O.; Boatz, J. A. *J. Am. Chem. Soc.* **2009**, *131*, 13474–13489.
- 155. Frohn, H.-J.; Klose, A.; Henkel, G. Angew. Chem. Int. Ed. 1993, 32, 99–100.
- 156. Frohn, H.-J.; Theissen, M. Angew. Chem. Int. Ed. 2000, 39, 4591-4593.
- Maggiarosa, N.; Naumann, D.; Tyrra, W. Angew. Chem. Int. Ed. 2000, 39, 4588–4591.
- 158. Frohn, H. J.; Theissen, M. J. Fluorine Chem. 2004, 125, 981-988.
- 159. Bock, H.; Hinz-Hübner, D.; Ruschewitz, U.; Naumann, D. Angew. Chem. Int. Ed. 2002, 41, 448–450.
- 160. Farnham, W. B.; Calabrese, J. C. J. Am. Chem. Soc. 1986, 108, 2449-2451.
- Pauling, L. *Die Natur der Chemischen Bindung*, 3rd ed.; VCH Publishers: Weinheim, 1962; p. 223.
- Bock, H.; Scherer, H.; Tyrra, W.; Naumann, D. J. Fluorine Chem. 2006, 127, 1440–1445.
- 163. Perlow, G. J.; Yoshida, H. J. Chem. Phys. 1968, 49, 1474-1478.
- 164. Bilir, V.; Bälser, D.; Boese, R.; Frohn, H.-J. J. Fluorine Chem. 2009, 130, 824–829.
- 165. Frohn, H.-J.; Klose, A.; Schroer, T.; Henkel, G.; Buss, V.; Opitz, D.; Vahrenhorst, R. *Inorg. Chem.* **1998**, *37*, 4884–4890.
- 166. Schmidt, H.; Scherer, H.; Tyrra, W.; Hahn, J.; Naumann, D. Inorg. Chem. 2004, 43, 1837–1839.
- 167. Eisenberg, M.; DesMarteau, D. D. Inorg. Nucl. Chem. Lett. 1970, 6, 29–34.
- 168. Moran, M. D.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2010, 132, 13823–13839.
- 169. Zefirov, N. S.; Gakh, A. A.; Zhdankin, V. V.; Stang, P. J. J. Org. Chem. 1991, 56, 1416–1418.
- 170. Luzzati, V. Acta Crystallogr. 1951, 4, 120-131.
- 171. Obermeyer, A.; Borrmann, H.; Simon, A. J. Am. Chem. Soc. **1995**, *117*, 7887–7890.
- 172. Minkwitz, R.; Hertel, T. Z. Naturforsch. 1997, 52b, 1307–1310.
- 173. Hagiwara, R.; Hollander, F.; Maines, C.; Bartlett, N. Eur. J. Solid State Inorg. Chem. 1991, 28, 855–866.
- 174. Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. Inorg. Chem. 1999, 38, 3609–3620.
- 175. Tramšek, M.; Benkič, P.; Turičnik, A.; Tavčar, G.; Žemva, B. J. Fluorine Chem. 2002, 114, 143–148.
- 176. Tavčar, G.; Tramšek, M.; Bunič, T.; Benkič, P.; Žemva, B. J. Fluorine Chem. 2004, 125, 1579–1584.
- 177. Tramšek, M.; Benkič, P.; Žemva, B. Inorg. Chem. 2004, 43, 699–703.
- 178. Benkič, P.; Tramšek, M.; Žemva, B. Solid State Sci. 2002, 4, 1425–1434.
- 179. Bunič, T.; Tramšek, M.; Goreshnik, E.; Žemva, B. *Solid State Sci.* **2008**, *10*, 1511–1516.
- 180. Tavčar, G.; Žemva, B. Inorg. Chem. 2005, 44, 1525–1529.
- 181. Lutar, K.; Borrmann, H.; Mazej, Z.; Tramšek, M.; Benkič, P.; Žemva, B. J. Fluorine Chem. 2000, 101, 155–160.
- Tramšek, M.; Lork, E.; Mews, R.; Žemva, B. J. Solid State Chem. 2001, 162, 243–249.
- 183. Tramšek, M.; Benkič, P.; Žemva, B. Angew. Chem. Int. Ed. 2004, 43, 3456–3458.
- 184. Bunič, T.; Tavčar, G.; Tramšek, M.; Žemva, B. Inorg. Chem. 2006, 45, 1038–1042.
- 185. Tramšek, M.; Benkič, P.; Žemva, B. Solid State Sci. 2002, 4, 9-14.
- 186. Bunič, T.; Tramšek, M.; Goreshnik, E.; Tavčar, G.; Žemva, B. *Inorg. Chem.* 2007, 46, 5276–5282.

- 187. Turičnik, A.; Benkič, P.; Žemva, B. Inorg. Chem. 2002, 41, 5521–5524.
- 188. Tavčar, G.; Goreshnik, E.; Mazej, Z. J. Fluorine Chem. 2006, 127, 1368-1373.
- 189. Lozinšek, M.: Radan, K.: Goreshnik, E.: Žemva, B. 242nd ACS National Meeting & Exposition, Denver, CO, Aug 28-Sept 1, 2011, abstract # 42. Unpublished results.
- Tavčar, G.; Benkič, P.; Žemva, B. *Inorg. Chem.* 2004, 43, 1452–1457.
 Pearson, R. G. *Inorg. Chem.* 1988, 27, 734–740.
- 192. Turičnik A (2003) PhD Thesis, University of Ljubljana, Ljubljana, Slovenia.
- 193. Gerken, M.; Hazendonk, P.; Iuga, A.; Nieboer, J.; Tramšek, M.; Goreshnik, E.; Žemva, B.; Zheng, S.; Autschbach, J. Inorg. Chem. 2007, 46, 6069-6077.
- 194. Bunič, T.; Tramšek, M.; Goreshnik, E.; Žemva, B. Collect. Czech. Chem. Commun. 2008, 73, 1645-1654.
- 195. Žemva, B.; Jesih, A.; Templeton, D. H.; Zalkin, A.; Cheethman, A. K.; Bartlett, N. J. Am. Chem. Soc. 1987, 109, 7420-7427.
- 196. Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. Inorg. Chem. 2010, 49, 6673-6689.
- 197. Brock, D. S.; Casalis de Pury, J. J.; Mercier, H. P. A.; Schrobilgen, G. J.; Silvi, B. J. Am. Chem. Soc. 2010, 132, 3533–3542.
- 198. Friec, B.; Holloway, J. H. J. Chem. Soc., Dalton Trans. 1975, 535-540.
- 199. Holloway, J. H.; Knowles, J. G. J. Chem. Soc. A. 1969, 756-761.
- 200. Jones, G. R.; Burbank, R. D.; Bartlett, N. Inorg. Chem. 1970, 9, 2264-2268.
- 201. Burns, J. H.; Ellison, R. D.; Levy, H. A. Acta Crystallogr. 1965, 18, 11-16.
- 202. Bartlett, N.; Wechsberg, M. Z. Anorg. Allg. Chem. 1971, 385, 5-17.
- 203. Hughes, M. J.; Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Fluorine Chem. 2011, 132, 660-668.
- 204. Dixon, D. A.; deJong, W. A.; Peterson, K. A.; Christe, K. O.; Schrobilgen, G. J. J. Am. Chem. Soc. 2005, 127, 8627-8634.
- 205. Grant, D. J.; Wang, T.-H.; Dixon, D. A.; Christe, K. O. Inorg. Chem. 2010, 49, 261-270
- 206. Dixon, D. A.; Wang, T.-H.; Grant, D. J.; Peterson, K. A.; Christe, K. O.; Schrobilgen, G. J. Inora. Chem. 2007, 46, 10016-10021.
- 207. Pilmé, J.; Robinson, E. A.; Gillespie, R. J. Inorg. Chem. 2006, 45, 6198-6204.
- 208. Christe, K. O.; Curtis, E. C.; Dixon, D. A.; Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J. J. Am. Chem. Soc. 1991, 113, 3351-3361.
- 209. Peacock, R. D.; Selig, H.; Sheft, I. Proc. Chem. Soc. 1964, 285
- 210. Peacock, R. D.; Selig, H.; Sheft, I. J. Inorg. Nucl. Chem. 1966, 28, 2561-2567
- 211. Ellern, A.; Mahjoub, A.-R.; Seppelt, K. Angew. Chem. Int. Ed Engl. 1996, 35, 1123-1125
- 212. Peterson, S. W.; Holloway, J. H.; Coyle, B. A.; Williams, J. M. Science 1971, 173, 1238-1239
- 213. Adam, S.; Ellern, A.; Seppelt, K. Chem. Eur. J. 1996, 2, 398-402
- 214. Christe, K. O.; Wilson, W. W. Inorg. Chem. 1982, 21, 4113-4117.
- 215. Begun, G. M.; Compton, R. N. Int. J. Mass Spectrom. Ion Phys. 1979, 30, 379-382
- 216. Studier, M. H.; Sloth, E. N. In Noble Gas Compounds; Hyman, H. H., Ed.; University of Chicago Press: Chicago, 1963; pp 47-49.
- 217. Krouse, I. H.; Hao, C.; Check, C. E.; Lobring, K. C.; Sunderlin, L. S.; Wenthold, P. G. J. Am. Chem. Soc. 2007, 129, 846-852
- 218. Misochko, E. Y.; Akimov, A. V.; Belov, V. A.; Tyurin, D. A. Inorg. Chem. 2009, 48, 8723-8728
- 219. Appelman, E. H. Inorg. Chem. 1967, 6, 1268-1269.
- 220. Vasdev, N.; Pointner, B. E.; Chirakal, R.; Schrobilgen, G. J. J. Am. Chem. Soc. 2002, 124, 12863-12868
- 221. Schrobilgen, G.; Firnau, G.; Chirakal, R.; Garnett, E. S. J. Chem. Soc. Chem. Commun. 1981, 198-199.
- 222. Sood, S.; Firnau, G.; Garnett, E. S. Int. J. Appl. Radiat. Isot. 1983, 34, 743-745
- 223. Firnau, G.; Chirakal, R.; Sood, S.; Garnett, E. S. J. Labelled Compd. Rad. 1981, 18, 7-8.
- 224. Vasdev, N.; Moran, M. D.; Tuononen, H. M.; Chirakal, R.; Suontamo, R. J.; Bain, A. D.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 8997-9004.
- 225. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. Chem. Commun. 1971, 1543-1544
- 226. Boldrini, P.; Gillespie, R. J.; Ireland, P. R.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 1690-1694.
- 227. McKee, D. E.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1713-1717
- 228. Claassen, H. H.; Chernick, C. L.; Malm, J. G. J. Am. Chem. Soc. 1963, 85, 1927-1928
- 229 Schumacher, G. A.; Schrobilgen, G. J. Inorg. Chem. 1984, 23, 2923-2929.
- 230. Burns, J. H.; Agron, P. A.; Levy, H. A. Science 1963, 139, 1208–1209.
- 231. Jacob, E.; Lentz, D.; Seppelt, K.; Simon, A. Z. Anorg. Allg. Chem. 1981, 472, 7 - 25
- 232. Turowsky, L.; Seppelt, K. Z. Anorg. Allg. Chem. 1992, 609, 153-156.

- 233. Frohn, H.-J.; Leblond, N.; Lutar, K.; Žemva, B. Angew. Chem. Int. Ed. 2000, 39, 391-393
- 234. Syvret, R. G.; Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1985, 1529-1530
- 235. Syvret, R. G.; Mitchell, K. M.; Sanders, J. C. P.; Schrobilgen, G. J. Inora. Chem. 1992, 31, 3381-3385
- 236. Ogden, J. S.; Turner, J. J. Chem. Comm. 1966, 19, 693-694.
- 237. Jacob, E.; Opferkuch, R. Angew. Chem. Int. Ed Engl. 1976, 15, 158-159.
- 238. Gillespie, R. J.; Schrobilgen, G. J. Chem. Commun. 1977, 595-597.
- 239. Tavčar, G.; Žemva, B. Angew. Chem. Int. Ed. 2009, 48, 1432-1434.
- 240. Brock, D. S.; Bilir, V.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2007. 129. 3598-3611.
- 241. Smith, D. F. J. Am. Chem. Soc. 1963, 85, 816-817.
- 242. Templeton, D. H.; Zalkin, A.; Forrester, J. D.; Williamson, S. M. J. Am. Chem. Soc. 1963. 85. 817.
- 243. Selig, H.; Claassen, H. H.; Chernick, C. L.; Malm, J. G.; Huston, J. L. Science 1964, 143, 1322-1323.
- 244. Huston, J. L.; Studier, M. H.; Sloth, E. N. Science 1964, 143, 1161-1162.
- 245. Gunn, S. R. In Noble Gas Compounds; Hyman, H. H., Ed.; University of Chicago Press: Chicago, 1963; pp 149-151
- 246. Gunn. S. R. J. Am. Chem. Soc. 1965, 87, 2290-2291.
- 247. Yamanishi, M.; Hirao, K.; Yamashita, K. J. Chem. Phys. 1998, 108, 1514–1521.
- 248. Bartlett, N.; Rao, P. R. Science 1963, 139, 506
- 249. Williamson, S. M.; Koch, C. W. Science 1963, 139, 1046-1047.
- 250. Appelman, E. H.; Malm, J. G. J. Am. Chem. Soc. 1964, 86, 2141-2148.
- 251. Williamson, S. M.; Koch, C. W. In Noble Gas Compounds; Hyman, H. H., Ed.; University of Chicago Press: Chicago, 1963; pp 158-166
- 252. Brock, D. S.; Schrobilgen, G. J. J. Am. Chem. Soc. 2011, 133, 6265-6269.
- 253. Tsao, P.; Cobb, C. C.; Claassen, H. H. J. Chem. Phys. 1971, 54, 5247-5253
- 254. Anders, E.; Owen, T. Science 1977, 198, 453-465
- Sanloup, C.; Schmidt, B. C.; Chamorro Perez, E. M.; Jambon, A.; Gregoryanz, E.; 255. Mezouar, M. Science 2005, 310, 1174-1177.
- 256. Nishio-Hamane, D.; Yagi, T.; Sata, N.; Fujita, T.; Okada, T. Geophys. Res. Lett. 2010, 37 L04302/1-L04302/4.
- 257. Probert, M. I. J. J. Phys. Condens. Matter 2010, 22, 025501/1-025501/10.
- 258. Schmeisser, M.; Dahmen, K.; Sartori, P. Chem. Ber. 1970, 103, 307-311.
- 259. Yagupol'skii, L. M.; Lyalin, V. V.; Orda, V. V.; Alekseeva, L. A. Zh. Org. Khim. 1970, 6, 329-332; J. Org. Chem. USSR 1970, 6, 317-319.
- 260. Frohn, H.-J.; Helber, J. J. Fluorine Chem. 1980, 16, 568.
- 261. Schmeisser, M.; Dahmen, K.; Sartori, P. Chem. Ber. 1967, 100, 1633–1637.
- 262. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 1256–1263
- Brock, D. S.; Mercier, H. P. A.; Schrobilgen, G. J. J. Am. Chem. Soc. 2010, 132, 263. 10935-10943.
- 264. Hover, S.; Emmler, T.; Seppelt, K. J. Fluorine Chem. 2006, 127, 1415-1422.
- 265. Agron, P. A.; Johnson, C. K.; Levy, H. A. Inorg. Nucl. Chem. Lett. 1965, 1, 145-148
- 266. Jones, G. R.; Burbank, R. D.; Falconer, W. E. J. Chem. Phys. 1970, 53, 1605-1606
- 267 Jones, G. R.; Burbank, R. D.; Falconer, W. E. J. Chem. Phys. 1970, 52, 6450-6451.
- 268. Burbank, R. D.; Jones, G. R. Science 1971, 485-487.
- 269. Burbank, R. D.; Jones, G. R. J. Am. Chem. Soc. 1974, 96, 43-48.
- 270. Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2010, 49, 3501-3515
- 271. Leary, K.; Templeton, D. H.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1973, 12, 1726-1730.
- 272. Jesih, A.; Lutar, K.; Leban, I.; Zemva, B. Eur. J. Solid State Inorg. Chem. 1991, 28.829-840
- 273. Pointner, B. E.; Suontamo, R. J.; Schrobilgen, G. J. Inorg. Chem. 2006, 45, 1517-1534
- 274. Bartlett, N.; Einstein, F.; Stewart, D. F.; Trotter, J. J. Chem. Soc. A. 1967, 1190-1193
- 275. Lutar, K.; Jesih, A.; Leban, I.; Zemva, B.; Bartlett, N. Inorg. Chem. 1989, 28, 3467-3471.
- 276. Leary, K.; Zalkin, A.; Bartlett, N. Inorg. Chem. 1974, 13, 775-779.
- 277. Jesih, A.; Lutar, K.; Leban, I.; Žemva, B. Inorg. Chem. 1989, 28, 2911-2914.
- 278. Hughes, M. J.; Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 2009, 48, 4478-4490
- 279. Martins, J. F.; Wilson, E. B., Jr. J. Mol. Spectrosc. 1968, 26, 410-417.
- 280. Jacob, E. J.; Thompson, H. B.; Bartell, L. S. J. Mol. Struct. 1971, 8, 383-394.
- Holloway, J. H.; Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1975, 281. 623-624
- 282. Žemva, B.; Slivnik, J.; Bohinc, M. J. Inorg. Nucl. Chem. 1976, 38, 73–74.

- 284. Decken, A.; Jenkins, H. D. B.; Knapp, C.; Nikiforov, G. B.; Passmore, J.; Rautiainen, J. M. Angew. Chem. Int. Ed. 2005, 44, 7958–7961.
- 285. Mazej, Z.; Goreshnik, E. Inorg. Chem. 2009, 48, 6918-6923.
- 286. Gillespie, R. J.; Landa, B.; Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1972, 607–609.
- 287. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1974, 13, 2370–2374.
- 288. Peterson, S. W.; Willett, R. D.; Huston, J. L. J. Chem. Phys. 1973, 59, 453-459.
- 289. LeBlond, N.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 2473-2487.
- 290. Mercier, H. P. A.; Sanders, J. C. P.; Schrobilgen, G. J.; Tsai, S. S. *Inorg. Chem.* 1993, *32*, 386–393.
- 291. Gerken, M.; Schrobilgen, G. J. Inorg. Chem. 2002, 41, 198-204.
- 292. Schrobilgen, G. J.; Holloway, J. H.; Granger, P.; Brevard, C. Inorg. Chem. 1978, 17, 980–987.
- 293. Christe, K. O.; Wilson, R. D.; Schack, C. J. Inorg. Chem. 1981, 20, 2104-2114.
- 294. Luhmer, M.; Reisse, J. Prog. Nucl. Magn. Reson. Spectrosc. 1998, 33, 57-76.
- 295. Forgeron, M. A. M.; Wasylishen, R. E.; Gerken, M.; Schrobilgen, G. J. Inorg. Chem. 2007, 46, 3585–3592.
- 296. Žemva, B.; Slivnik, J.; Šmalc, A. J. Fluorine Chem. 1975, 6, 191–193.
- 297. Lutar, K.; Jesih, A.; Žemva, B. Polyhedron 1988, 7, 1217–1219.
- 298. Christe, K. O.; Wilson, W. W.; Bougon, R. A. Inorg. Chem. 1986, 25, 2163-2169.
- 299. Holloway, J. H.; Schrobilgen, G. J. Inorg. Chem. 1981, 20, 3363-3368.
- 300. Nabiev, S. S.; Sokolov, V. B.; Spirin, S. N.; Chaivanov, B. B. Russ. J. Phys. Chem. A 2011, 85, 1931–1941.
- Al-Mukhtar, M.; Holloway, J. H.; Hope, E. G.; Schrobilgen, G. J. J. Chem. Soc. Dalton Trans. 1991, 2831–2834.
- 302. Burbank, R. D.; Falconer, W. E.; Sunder, W. A. Science 1972, 178, 1285-1286.
- Harshbarger, W.; Bohn, R. K.; Bauer, S. H. J. Am. Chem. Soc. 1967, 89, 6466–6469.
- 304. Holloway, J. H.; Schrobilgen, G. J. *Inorg. Chem.* **1980**, *19*, 2632–2640.
- 305. Friec, B.; Holloway, J. H. *J. Chem. Soc. Chem. Commun.* **1973**, 370–371.
- 306. Friec, B.; Holloway, J. H. *J. Chem. Soc. Chem. Commun.* **1974**, 89–90.
- Gillespie, R. J.; Schrobilgen, G. J. J. Chem. Soc. Chem. Commun. 1974, 90–92.
- 308. Friec, B.; Holloway, J. H. Inorg. Chem. 1976, 15, 1263-1270.
- 309. Gillespie, R. J.; Schrobilgen, G. J. Inorg. Chem. 1976, 15, 22-31
- 310. Selig, H.; Peacock, R. D. J. Am. Chem. Soc. 1964, 86, 3895.
- Lehmann, J. F.; Schrobilgen, G. J.; Christe, K. O.; Kornath, A.; Suontamo, R. J. Inorg. Chem. 2004, 43, 6905–6921.
- 312. Christe, K. O.; Wilson, W. W.; Curtis, E. C. Inorg. Chem. 1983, 22, 3056–3060.
- Christe, K. O.; Dixon, D. A.; Mack, H. G.; Oberhammer, H.; Pagelot, A.; Sanders, J. C. P.; Schrobilgen, G. J. *J. Am. Chem. Soc.* **1993**, *115*, 11279–11284.
- LeBlond, N.; Mercier, H. P. A.; Dixon, D. A.; Schrobilgen, G. J. Inorg. Chem. 2000, 39, 4494–4509.
- 315. Mercier, H. P. A.; Schrobilgen, G. J. Inorg. Chem. 1993, 32, 145-151.
- Mallouk, T. E.; Rosenthal, G. L.; Müller, G.; Brusasco, R.; Bartlett, N. *Inorg. Chem.* 1984, 23, 3167–3173.
- 317. Shen, C.; Hagiwara, R.; Mallouk, T.; Bartlett, N. In *Inorganic Fluorine Chemistry*, *Toward the 21st Century*, ACS Symposium Series 555; Thrasher, J. S., Strauss, S. H., Eds.; American Chemical Society: Washington, DC, 1994; pp 26–39, Chapter 2.
- 318. Jenkins, H. D. B.; Tudela, D. J. Chem. Educ. 2003, 80, 1482-1487.
- 319. Glasser, L.; Jenkins, H. D. B. Chem. Soc. Rev. 2005, 34, 866-874.
- 320. Thompson, C. A. T.; Andrews, L. J. Am. Chem. Soc. **1994**, *116*, 423–424.
- 321. Panek, J.; Latajka, Z.; Lundell, J. Phys. Chem. Chem. Phys. 2002, 4, 2504–2510.
- 322. Khriachtchev, L.; Räsänen, M.; Gerber, R. B. Acc. Chem. Res. 2009, 42, 183–191.
- Grochala, W.; Khriachtchev, L.; Räsänen, M. In *Physics and Chemistry at Low Temperatures*; Khriachtchev, L., Ed.; Pan Stanford Publishing, 2011; pp 419–446.
- 324. Khriachtchev, L.; Pettersson, M.; Runeberg, N.; Lundell, J.; Räsänen, M. Nature 2000, 406, 874–876.
- Khriachtchev, L.; Pettersson, M.; Lignell, A.; Räsänen, M. J. Am. Chem. Soc. 2001, 123, 8610–8611.
- Lignell, H.; Khriachtchev, L.; Lignell, A.; Räsänen, M. Low Temp. Phys. 2010, 36, 400–406.
- 327. Runeberg, N.; Pettersson, M.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Chem. Phys. 2001, 114, 836–841.
- Bochenkova, A. V.; Bochenkov, V. E.; Khriachtchev, L. J. Phys. Chem. A 2009, 113, 7654–7659.
- 329. Pettersson, M.; Khriachtchev, L.; Lignell, A.; Räsänen, M.; Bihary, Z.; Gerber, R. B. J. Chem. Phys. 2002, 116, 2508–2515.
- Lundell, J.; Khriachtchev, L.; Pettersson, H.; Räsänen, M. Low Temp. Phys. 2000, 26, 680–690.

- 331. Nahler, H. N.; Baumfalk, R.; Buck, V.; Bihary, Z.; Gerber, R. B. J. Chem. Phys. 2003, 119, 224–231.
- 332. KHriachtchev, L.; Lignell, A.; Juselius, J.; Räsänen, M.; Savchenko, E. J. Chem. Phys. 2005, 122, 014510/1–014510/9.
- 333. Bihary, Z.; Chaban, G. M.; Gerber, R. B. J. Chem. Phys. 2002, 116, 5521-5529.
- Ahokas, J.; Vaskouen, K.; Eloranta, J.; Kunttu, H. J. Phys. Chem. A 2000, 104, 9506–9511.
- Lignell, H.; Khriachtchev, L.; Pettersson, M.; Räsänen, M. J. Chem. Phys. 2003, 118, 11120–11128.
- 336. Khriachtchev, L.; Tapio, S.; Räsänen, M.; Domanskaya, A.; Lignell, A. J. Chem. Phys. 2010, 133, 084309/1–084309/13.
- Berski, S.; Latajka, Z.; Silvi, B.; Lundell, J. J. Chem. Phys. 2001, 114, 4349–4358.
- Ahokas, J.; Kunttu, H.; Khriachtchev, L.; Pettersson, M.; Rasanen, M. J. J. Phys. Chem. A 2002, 106, 7743–7747.
- 339. Khriachtchev, L.; Isokoski, K.; Cohen, A.; Räsänen, M.; Gerber, R. B. J. Am. Chem. Soc. 2008, 130, 6114–6118.
- 340. Tsivion, E.; Gerber, R. B. Chem. Phys. Lett. 2009, 482, 30-33.
- 341. Liu, Z.-B.; Li, Z.-R.; Zuo, M.-H.; Li, Q.-Z.; Ma, F.; Li, Z.-J.; Chen, G.; Sun, C.-C. J. Chem. Phys. 2009, 131, 044308/1–044308/12.
- 342. Mück, L. A.; Timoshkin, A. Y.; von Hopffgarten, M.; Frenking, G. J. Am. Chem. Soc. 2009, 131, 3942–3949.
- 343. Pérez-Peralta, N.; Juárez, R.; Cerpa, E.; Bickelhaupt, F. M.; Merino, G. J. Phys. Chem. A 2009, 113, 9700–9706.
- 344. Fitzsimmons, A.; Mori, H.; Miyoshi, E.; Klobukowski, M. J. Phys. Chem. A 2010, 114, 8786–8792.
- 345. McDowell, S. A. C. J. Chem. Phys. 2004, 120, 3630-3634.
- Borocci, S.; Bronzolino, N.; Grandinetti, F. Chem. Phys. Lett. 2004, 398, 357–360.
- 347. McDowell, S. A. C. J. Chem. Phys. 2001, 114, 8395-8396.
- Jiménez-Halla, C. O. C.; Fernández, I.; Frenking, G. Angew. Chem. Int. Ed. 2009, 48, 366–369.
- Avramopoulos, A.; Serrano-Andrés, L.; Li, J.; Papadopoulos, M. G. J. Chem. Theory Comput. 2010, 6, 3365–3372.
- Borocci, S.; Bronzolino, N.; Giordani, M.; Grandinetti, F. J. Phys. Chem. A 2010, 114, 7382–7390.
- 351. Hoffman, G. J. Chem. Phys. 2009, 361, 68-74.
- Cukras, J.; Antušek, A.; Holka, F.; Sadlej, J. Chem. Phys. Lett. 2009, 474, 258–262.
- 353. Borocci, S.; Bronzolino, N.; Grandinetti, F. Chem. Phys. Lett. 2009, 470, 49-53.
- 354. Lundell, J.; Cohen, A.; Gerber, R. B. J. Phys. Chem. A 2002, 106, 11950-11955.
- 355. Khriatchchev, L.; Tanskanen, H.; Lundell, J.; Pettersson, M.; Kiljunen, H.;
- Räsänen, M. J. Am. Chem. Soc. 2003, 125, 4696–4697.
 356. Feldman, V. I.; Sukhov, F. F.; Orlov, A. Y.; Tyulpina, I. V. J. Am. Chem. Soc.
- **2003**, *125*, 4698–4699.
- 357. Tanskanen, H.; Khriachtchev, L.; Lundell, J.; Räsänen, M. J. Chem. Phys. 2006, 125, 074501/1–074501/10.
- 358. Feldman, V. I.; Kobzarenko, A. V.; Baranova, I. A.; Danchenko, A. V.; Sukhov, F. F.; Tsivion, E.; Gerber, R. B. *J. Chem. Phys.* **2009**, *131*, 151101/1–151101/3.
- 359. Tanskanen, H.; Johansson, S.; Lignell, A.; Khriachtchev, L.; Räsänen, M. J. Chem. Phys. 2007, 127, 154313/1–154313/7.
- 360. Khriachtchev, L.; Tanskanen, H.; Cohen, A.; Gerber, R. B.; Lundell, J.; Pettersson, M.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 6876–6877.
- 361. Tsivion, E.; Gerber, R. B. Phys. Chem. Chem. Phys. 2010, 12, 11791–11794.
- 362. Ansbacher, T.; Gerber, R. B. Phys. Chem. Chem. Phys. 2006, 8, 4175–4181.
- 363. Sheng, L.; Gerber, R. B. J. Chem. Phys. 2006, 124, 231103/1–231103/3.
- 364. Khriachtchev, L.; Domanskaya, A.; Lundell, J.; Akimov, A.; Räsänen, M.; Misochko, E. J. Phys. Chem. A 2010, 114, 4181–4187.
- 365. Yockel, S.; Gawlik, E.; Wilson, A. K. J. Phys. Chem. A 2007, 111, 11261–11268.
- 366. Tanskanen, H.; Khriachtchev, L.; Lundell, J.; Kiljunen, H.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 16361–16366.
- 367. Sheng, L.; Cohen, A.; Gerber, R. B. J. Am. Chem. Soc. 2006, 128, 7156–7157.
- Khriatchchev, L.; Pettersson, M.; Lundell, J.; Tanskanen, H.; Kivinjemi, T.; Runeberg, N.; Räsänen, M. J. Am. Chem. Soc. 2003, 125, 1454–1455.
- 369. Huang, Z. Chem. Phys. 2009, 359, 34–39.
- 370. Li, J.; Bursten, B. E.; Liang, B.; Andrews, L. Science 2002, 295, 2242-2245.
- 371. Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. J. Am. Chem. Soc. 2002, 124, 9016–9017.
- 372. Andrews, L.; Liang, B.; Li, J.; Bursten, B. E. J. Am. Chem. Soc. 2003, 125, 3126–3139.
- 373. Liang, B.; Andrews, L.; Li, J.; Bursten, B. E. Inorg. Chem. 2004, 43, 882-894.
- 374. Lue, C. J.; Jin, J.; Ortiz, M. J.; Rienstra-Kiracofe, J. C.; Heaven, M. C. J. Am. Chem. Soc. 2004, 126, 1812–1815.

- 375. Li, J.; Bursten, B. E.; Andrews, L.; Marsden, C. J. J. Am. Chem. Soc. 2004, 126, 3424–3425.
- 376. Wang, X.; Andrews, L.; Li, J.; Bursten, B. E. Angew. Chem. Int. Ed. 2004, 43, 2554–2557.
- 377. Zhao, Y.; Gong, Y.; Zhou, M. J. Phys. Chem. A 2006, 110, 10777-10782
- 378. Zhao, Y.; Gong, Y.; Chen, M.; Ding, C.; Zhou, M. J. Phys. Chem. A 2005, 109, 11765–11770.
- 379. Zhao, Y.; Gong, L.; Chen, M.; Zhou, M. J. Phys. Chem. A 2005, 109, 6621–6623.
- 380. Zhao, Y.; Gong, Y.; Chen, M.; Zhou, M. *J. Phys. Chem. A* **2006**, *110*, 1845–1849.
- 381. Kobayashi, T.; Seki, K.; Takayanagi, T. *Chem. Phys. Lett.* **2010**, *498*, 235–239.
- Thomas, J. M.; Walker, N. R.; Cooke, S. A.; Gerry, M. C. L. *J. Am. Chem. Soc.* 2004, *126*, 1235–1246.
 Cooke, S. A.; Gerry, M. C. L. *J. Am. Chem. Soc.* 2004, *126*, 127000, 17000
- 383. Cooke, S. A.; Gerry, M. C. L. J. Am. Chem. Soc. 2004, 126, 17000–17008.
- 384. Michaud, J. M.; Cooke, S. A.; Gerry, M. C. L. Inorg. Chem. 2004, 43, 3871–3881.
- 385. Michaud, J. M.; Gerry, M. C. L. J. Am. Chem. Soc. 2006, 128, 7613–7621.
- 386. Zou, W.; Liu, Y.; Boggs, J. E. *Chem. Phys. Lett.* **2009**, *482*, 207–210.
- 387. Holka, F.; Avramopoulos, A.; Loboda, O.; Kellö, V.; Papadopoulos, M. G. Chem. Phys. Lett. 2009, 472, 185–189.
- Rodrigues, E. F. F.; de Sá, E. L.; Haiduke, R. L. A. J. Phys. Chem. A 2010, 114, 5222–5229.
- Evans, C. J.; Wright, T. G.; Gardner, A. M. J. Phys. Chem. A 2010, 114, 4446–4454.
- 390. Beyhan, S. M.; Götz, A. W.; Jacob, C. R.; Visscher, L. J. Chem. Phys. 2010, 132, 044114/1–044114/9.
- 391. Zou, W.; Liu, Y.; Boggs, J. E. Dalton Trans. 2010, 39, 2023-2026
- 392. Zhou, M.; Zhao, Y.; Gong, Y.; Li, J. J. Am. Chem. Soc. 2006, 128, 2504–2505.
- 393. Poterya, V.; Votava, O.; Fárnik, M.; Ončák, M.; Slaviček, P.; Buck, U.; Friedrich, B. J. Chem. Phys. 2008, 128, 104313/1–104313/10.
- 394. Ascenzi, D.; Tosi, P.; Roithová, J.; Ricketts, C. L.; Schröder, D.; Lockyear, J. F.; Parkes, M. A.; Price, S. D. *Phys. Chem. Chem. Phys.* **2008**, *10*, 7121–7128.
- 395. Ascenzi, D.; Tosi, P.; Roithová, J.; Schröder, D. Chem. Commun. 2008, 4055–4057.
- 396. Lockyear, J. F.; Douglas, K.; Price, S. D.; Karwowska, M.; Fijalkowski, K. J.; Grochala, W.; Remeš, M.; Roithová, J.; Schröder, D. J. Phys. Chem. Lett. 2010, 1, 358–362.
- 397. Roithová, J.; Schröder, D. Angew. Chem. Int. Ed. 2009, 48, 8788-8790.
- 398. Koyanagi, G. K.; Bohme, D. K. J. Phys. Chem. Lett. 2010, 1, 41-44.
- 399. Antoniotti, P.; Bottizzo, E.; Operti, L.; Rabezzana, R.; Borocci, S.; Grandinetti, F. J. Phys. Chem. Lett. 2010, 1, 2006–2010.
- 400. Gardner, A. M.; Gutsmiedl, K. A.; Wright, T. G.; Breckenridge, W. H.; Chapman, C. Y. N.; Viehland, L. A. J. Chem. Phys. 2010, 133, 164302/1–164302/6.
- 401. Gardner, A. M.; Withers, C. D.; Graneek, J. B.; Wright, T. G.; Viehland, L. A.; Breckenridge, W. H. J. Phys. Chem. A 2010, 114, 7631–7641.
- 402. Žemva, B. *Croat. Chem. Acta* **1988**, *61*, 163–187.
- 403. Bartlett, N.; Sladky, F. O. Chem. Commun. 1968, 1046–1047.
- 404. Adamson, A. J.; Holloway, J. H.; Hope, E. G.; Taylor, R. Fullerene Sci. Technol. 1997, 5, 629–642.
- Dementjev, A. P.; Bezmelnitsin, V. N.; Ryjkov, A. V.; Sokolov, V. N. In Proceedings of the 12th European Symposium on Fluorine Chemistry, Berlin, Germany, 1998; Abstract P–II.
- 406. Yudanov, N. F.; Ocotrub, A. V.; Bulusheva, L. G.; Asanov, I. P.; Shevtsov, Y. V. *Mol. Mater.* **1998**, *43*, 122–127.
- 407. Denisenko, N. I.; Streletskii, A. V.; Boltalina, O. V. Phys. Solid State 2002, 44, 539–541.
- 408. Denisenko, N. I.; Troyanov, S. I.; Popov, A. A.; Kuvychko, I. V.; Žemva, B.; Kemnitz, E.; Strauss, S. H.; Boltalina, O. V. J. Am. Chem. Soc. 2004, 126, 1618–1619.
- 409. Tramšek, M.; Žemva, B. Acta Chim. Slov. 2002, 49, 209–220.
- Yamaguchi, S.; Akiyama, S.; Tamao, K. J. Organometallic Chem. 2002, 646, 277–281.
- 411. Yamaguchi, S.; Shirasaka, T.; Tamao, K. Organometallics 2002, 21, 2555–2558.

- 412. Klapötke, T. M.; Krumm, B.; Mayer, P.; Piotrowski, H.; Ruscitti, O. P.; Schiller, A. Inorg. Chem. 2002, 41, 1184–1193.
- Mason, M. R.; Verkade, J. G. Organometallics 1992, 11, 2212–2220; Mason, M. R.; Verkade, J. G. Organometallics 1990, 9, 864–865.
- 414. Yahav, A.; Goldberg, I.; Vigalok, A. J. Am. Chem. Soc. 2003, 125, 13634–13635.
- 415. Grushin, V. V. Organometallics **2000**, *19*, 1888–1900.
- Yahav, A.; Goldberg, I.; Vigalok, A. *Inorg. Chem.* 2005, *44*, 1547–1553.
 Kaspi, A. W.; Yahav-Levi, A.; Goldberg, I.; Vigalok, A. *Inorg. Chem.* 2008, *47*,
- 5-7.
- 418. Ball, N. D.; Sanford, M. S. J. Am. Chem. Soc. 2009, 131, 3796-3797.
- 419. Bley, B.; Willner, H.; Aubke, F. Inorg. Chem. 1997, 36, 158–160.
- Bernhardt, E.; Bach, C.; Bley, B.; Wartchow, R.; Westphal, U.; Sham, I. H. T.; von Ahsen, B.; Wang, C.; Willner, H.; Thompson, R. C.; Aubke, F. *Inorg. Chem.* 2005, 44, 4189–4205.
- 421. Finze, M.; Bernhardt, E.; Willner, H.; Lehmann, C. W.; Aubke, F. *Inorg. Chem.* 2005, 44, 4206–4214.
- 422. Frohn, H. J.; Bardin, V. V. J. Fluorine Chem. 2005, 126, 1036–1043.
- 423. Frohn, H. J.; Bardin, V. V. J. Fluorine Chem. 2006, 127, 18–21.
- 424. Fawcett, J.; Harding, D. A. J.; Hope, E. G.; Singh, K.; Solan, G. A. Dalton Trans. 2010, 39, 10781–10789.
- 425. Klapötke, T. M.; Krumm, B.; Scherr, M. Z. Anorg. Allg. Chem. 2010, 636, 1955–1961.
- Poleschner, H.; Heydenreich, M.; Schilde, U. *Eur. J. Inorg. Chem.* 2000, 1307–1313.
- Pirkuliev, N. Sh.; Brel, V. K.; Akhmedov, N. G.; Zefirov, N. S.; Stang, P. J. Electronic Version *Mendeleev Commun.* 2001, *11*, 172–173.
- Hartung, J.; Greb, M.; Svoboda, I.; Fuess, H. Acta Crystallogr. E 2005, 61, 02770–02771.
- Prakash, G. K. S.; Moran, M. D.; Mathew, T.; Olah, G. A. J. Fluorine Chem. 2009, 130, 806–809.
- 430. Ramsden, C. A.; Shaw, M. M. Tetrahedron Lett. 2009, 50, 3321-3324.
- Lourie, L. F.; Serguchev, Y. A.; Shevchenko, G. V.; Ponomarenko, M. V.; Chernega, A. N.; Rusanov, E. B.; Howard, J. A. K. *J. Fluorine Chem.* **2006**, *127*, 377–385.
- 432. Grošelj, U.; Tavčar, G.; Bevk, D.; Meden, A.; Žemva, B.; Stanovnik, B.; Svete, J. *Tetrahedron: Asymmetr.* 2006, 17, 1715–1727.
- Zupan, M. In *The Chemistry of Halides, Pseudo-Halides and Azides Part 1*; Saul, P., Zvi, R., Eds.; Wiley: Chichester, 1995; pp 821–860.
- 434. Zajc, B.; Zupan, M. J. Chem. Soc. Chem. Commun. 1980, 759-760.
- 435. Zajc, B.; Zupan, M. J. Org. Chem. **1982**, 47, 573–575.
- 436. Stavber, S.; Šket, B.; Zajc, B.; Zupan, M. Tetrahedron 1989, 45, 6003-6010.
- 437. Cantrell, G. L.; Filler, R. J. Fluorine Chem. **1985**, 27, 35–45.
- 438. Patrick, T. B.; Mortezania, R. J. Org. Chem. 1988, 53, 5153-5155.
- 439. Tsushima, T.; Kawada, K.; Tsuji, T. Tetrahedron Lett. 1982, 23, 1165–1168.
- 440. Garrett, G. S.; Emge, T. J.; Lee, S. C.; Fischer, E. M.; Dyehouse, K.; McIver, J. M. J. Org. Chem. 1991, 56, 4823–4826.
- 441. Kodama, T.; Matsuda, A.; Shuto, S. Tetrahedron 2006, 62, 10011-10017.
- 442. Mankad, N. P.; Toste, F. D. J. Am. Chem. Soc. 2010, 132, 12859-12861.
- 443. Ametamey, S. M.; Honer, M.; Schubiger, P. A. *Chem. Rev.* **2008**, *108*, 1501–1516.
- 444. Cai, L. S.; Lu, S. Y.; Pike, V. W. *Eur. J. Org. Chem.* **2008**, 2853–2873.
- 445. Miller, P. W.; Long, N. J.; Vilar, R.; Gee, A. D. Ang. Chem. Int. Engl. 2008, 47, 8998–9033.
- 446. Hollingworth, C.; Gouverneur, V. Chem. Commun. 2012, 48, 2929-2942.
- 447. Gouverneur, V. Nat. Chem. 2012, 4, 152-154.
- 448. Brel, V. K.; Pirkuliev, N. Sh.; Zefirov, N. S. *Russ. Chem. Rev.* 2001, *70*, 231–264.
- 449. Chirakal, R.; Firnau, G.; Schrobilgen, G. J.; Mckay, J.; Garnett, E. S. Int. J. Appl. Radiat. Isot. 1984, 35, 401–404.
- 450. Constantinou, M.; Aigbirhio, F. I.; Smith, R. G.; Ramsden, C. A.; Pike, V. W. J. Am. Chem. Soc. 2001, 123, 1780–1781.
- 451. Lu, S.; Pike, V. W. J. Fluorine Chem. 2010, 131, 1032-1038.